Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1303.2314
Cited By
Mini-Batch Primal and Dual Methods for SVMs
10 March 2013
Martin Takáč
A. Bijral
Peter Richtárik
Nathan Srebro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mini-Batch Primal and Dual Methods for SVMs"
33 / 33 papers shown
Title
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
Ruichen Luo
Sebastian U Stich
Samuel Horváth
Martin Takáč
38
0
0
08 Jan 2025
Continuous Concepts Removal in Text-to-image Diffusion Models
Tingxu Han
Dongrui Liu
Yanrong Hu
Chunrong Fang
Yonglong Zhang
Shiqing Ma
Tao Zheng
Zhenyu Chen
Zhenting Wang
DiffM
112
2
0
30 Nov 2024
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
30
1
0
05 Mar 2024
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
23
7
0
26 Nov 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
32
51
0
14 Feb 2021
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
556
0
01 Oct 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
16
40
0
28 Jan 2019
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
54
429
0
22 Aug 2018
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
13
22
0
11 Jun 2018
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
29
184
0
15 Jun 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
15
1,776
0
30 May 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
24
75
0
30 Mar 2017
Distributed Dual Coordinate Ascent in General Tree Networks and Communication Network Effect on Synchronous Machine Learning
Myung Cho
Lifeng Lai
Weiyu Xu
12
1
0
14 Mar 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
28
596
0
01 Mar 2017
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
27
13
0
31 Oct 2016
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
15
36
0
12 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
27
1,876
0
08 Oct 2016
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
13
22
0
13 Apr 2016
Training Region-based Object Detectors with Online Hard Example Mining
Abhinav Shrivastava
Abhinav Gupta
Ross B. Girshick
ObjD
49
2,399
0
12 Apr 2016
Optimal Margin Distribution Machine
Teng Zhang
Zhi-Hua Zhou
20
72
0
12 Apr 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
38
172
0
30 Dec 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
22
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
53
97
0
27 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
33
83
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
32
58
0
21 Nov 2014
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
40
261
0
10 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
26
353
0
04 Sep 2014
Semi-Stochastic Gradient Descent Methods
Jakub Konecný
Peter Richtárik
ODL
58
237
0
05 Dec 2013
Stochastic Dual Coordinate Ascent with Alternating Direction Multiplier Method
Taiji Suzuki
32
8
0
04 Nov 2013
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
36
253
0
08 Oct 2013
Parallel coordinate descent for the Adaboost problem
Olivier Fercoq
ODL
34
11
0
07 Oct 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
49
462
0
10 Sep 2013
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
1