ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.1208
  4. Cited By
Classification with Asymmetric Label Noise: Consistency and Maximal
  Denoising

Classification with Asymmetric Label Noise: Consistency and Maximal Denoising

5 March 2013
Gilles Blanchard
Marek Flaska
G. Handy
Sara Pozzi
Clayton Scott
    NoLa
ArXivPDFHTML

Papers citing "Classification with Asymmetric Label Noise: Consistency and Maximal Denoising"

8 / 8 papers shown
Title
An Embedding is Worth a Thousand Noisy Labels
An Embedding is Worth a Thousand Noisy Labels
Francesco Di Salvo
Sebastian Doerrich
Ines Rieger
Christian Ledig
NoLa
92
0
0
26 Aug 2024
Learning with Confident Examples: Rank Pruning for Robust Classification
  with Noisy Labels
Learning with Confident Examples: Rank Pruning for Robust Classification with Noisy Labels
Curtis G. Northcutt
Tailin Wu
Isaac L. Chuang
NoLa
36
159
0
04 May 2017
Recovering True Classifier Performance in Positive-Unlabeled Learning
Recovering True Classifier Performance in Positive-Unlabeled Learning
Shantanu Jain
Martha White
P. Radivojac
39
46
0
02 Feb 2017
Multiple Kernel Learning from Noisy Labels by Stochastic Programming
Multiple Kernel Learning from Noisy Labels by Stochastic Programming
Tianbao Yang
M. Mahdavi
Rong Jin
Lijun Zhang
Yang Zhou
NoLa
41
27
0
18 Jun 2012
Noise Tolerance under Risk Minimization
Noise Tolerance under Risk Minimization
Naresh Manwani
S. M. I. P. S. Sastry
NoLa
122
273
0
24 Sep 2011
Multi-Instance Learning with Any Hypothesis Class
Multi-Instance Learning with Any Hypothesis Class
Sivan Sabato
Naftali Tishby
59
45
0
11 Jul 2011
Identifying Mislabeled Training Data
Identifying Mislabeled Training Data
C. Brodley
M. Friedl
82
968
0
01 Jun 2011
Composite Binary Losses
Composite Binary Losses
Mark D. Reid
Robert C. Williamson
110
223
0
17 Dec 2009
1