ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.0934
  4. Cited By
GURLS: a Least Squares Library for Supervised Learning

GURLS: a Least Squares Library for Supervised Learning

5 March 2013
Andrea Tacchetti
Pavan Kumar Mallapragada
M. Santoro
Lorenzo Rosasco
ArXiv (abs)PDFHTMLGithub (62★)

Papers citing "GURLS: a Least Squares Library for Supervised Learning"

12 / 12 papers shown
Title
Offensive Language Detection: A Comparative Analysis
Offensive Language Detection: A Comparative Analysis
T. VyshnavM.
Sachin Kumar
Kritik Soman
34
4
0
09 Jan 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
75
1
0
11 Dec 2019
Derivative-free online learning of inverse dynamics models
Derivative-free online learning of inverse dynamics models
D. Romeres
Mattia Zorzi
Raffaello Camoriano
Silvio Traversaro
A. Chiuso
63
33
0
13 Sep 2018
Controlled Tactile Exploration and Haptic Object Recognition
Controlled Tactile Exploration and Haptic Object Recognition
Massimo Regoli
Nawid Jamali
Giorgio Metta
Lorenzo Natale
45
10
0
27 Jun 2017
liquidSVM: A Fast and Versatile SVM package
liquidSVM: A Fast and Versatile SVM package
Ingo Steinwart
P. Thomann
VLM
69
39
0
22 Feb 2017
Online semi-parametric learning for inverse dynamics modeling
Online semi-parametric learning for inverse dynamics modeling
D. Romeres
Mattia Zorzi
Raffaello Camoriano
A. Chiuso
47
48
0
17 Mar 2016
Incremental Semiparametric Inverse Dynamics Learning
Incremental Semiparametric Inverse Dynamics Learning
Raffaello Camoriano
Silvio Traversaro
Lorenzo Rosasco
Giorgio Metta
F. Nori
66
50
0
18 Jan 2016
Random Maxout Features
Random Maxout Features
Youssef Mroueh
Steven J. Rennie
Vaibhava Goel
91
7
0
11 Jun 2015
Learning with Group Invariant Features: A Kernel Perspective
Learning with Group Invariant Features: A Kernel Perspective
Youssef Mroueh
S. Voinea
T. Poggio
VLM
80
35
0
08 Jun 2015
Real-world Object Recognition with Off-the-shelf Deep Conv Nets: How
  Many Objects can iCub Learn?
Real-world Object Recognition with Off-the-shelf Deep Conv Nets: How Many Objects can iCub Learn?
Giulia Pasquale
C. Ciliberto
Francesca Odone
Lorenzo Rosasco
Lorenzo Natale
34
12
0
13 Apr 2015
Learning An Invariant Speech Representation
Learning An Invariant Speech Representation
Georgios Evangelopoulos
S. Voinea
Chiyuan Zhang
Lorenzo Rosasco
T. Poggio
SSL
58
5
0
16 Jun 2014
A Deep Representation for Invariance And Music Classification
A Deep Representation for Invariance And Music Classification
Chiyuan Zhang
Georgios Evangelopoulos
S. Voinea
Lorenzo Rosasco
T. Poggio
91
28
0
01 Apr 2014
1