ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.4983
  4. Cited By
Causal Inference in the Presence of Latent Variables and Selection Bias

Causal Inference in the Presence of Latent Variables and Selection Bias

20 February 2013
Peter Spirtes
Christopher Meek
Thomas S. Richardson
    CML
ArXivPDFHTML

Papers citing "Causal Inference in the Presence of Latent Variables and Selection Bias"

50 / 140 papers shown
Title
Characterization and Learning of Causal Graphs from Hard Interventions
Characterization and Learning of Causal Graphs from Hard Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
82
0
0
02 May 2025
Analytic DAG Constraints for Differentiable DAG Learning
Analytic DAG Constraints for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
M. Gong
Biwei Huang
Kun Zhang
Anton van den Hengel
Javen Qinfeng Shi
CML
48
1
0
24 Mar 2025
Causal Discovery and Counterfactual Reasoning to Optimize Persuasive Dialogue Policies
Causal Discovery and Counterfactual Reasoning to Optimize Persuasive Dialogue Policies
Donghuo Zeng
Roberto Legaspi
Yuewen Sun
Xinshuai Dong
Kazushi Ikeda
Peter Spirtes
Kun Zhang
CML
54
1
0
19 Mar 2025
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
91
7
0
13 Mar 2025
An Asymmetric Independence Model for Causal Discovery on Path Spaces
Georg Manten
Cecilia Casolo
Søren Wengel Mogensen
Niki Kilbertus
56
0
0
12 Mar 2025
When Selection Meets Intervention: Additional Complexities in Causal Discovery
Haoyue Dai
Ignavier Ng
Jianle Sun
Zeyu Tang
Gongxu Luo
Xinshuai Dong
Peter Spirtes
Kun Zhang
CML
71
0
0
10 Mar 2025
Your Assumed DAG is Wrong and Here's How To Deal With It
Kirtan Padh
Zhufeng Li
Cecilia Casolo
Niki Kilbertus
CML
40
0
0
24 Feb 2025
$ψ$DAG: Projected Stochastic Approximation Iteration for DAG
  Structure Learning
ψψψDAG: Projected Stochastic Approximation Iteration for DAG Structure Learning
Klea Ziu
Slavomír Hanzely
Loka Li
Kun Zhang
Martin Takáč
Dmitry Kamzolov
40
1
0
31 Oct 2024
Identifying Selections for Unsupervised Subtask Discovery
Identifying Selections for Unsupervised Subtask Discovery
Yiwen Qiu
Yujia Zheng
Kun Zhang
22
0
0
28 Oct 2024
Longitudinal Causal Image Synthesis
Longitudinal Causal Image Synthesis
Yujia Li
Han Li
ans S. Kevin Zhou
DiffM
MedIm
28
0
0
23 Oct 2024
Learning to refine domain knowledge for biological network inference
Learning to refine domain knowledge for biological network inference
Peiwen Li
Menghua Wu
CML
27
1
0
18 Oct 2024
Causal Inference with Large Language Model: A Survey
Causal Inference with Large Language Model: A Survey
Jing Ma
CML
LRM
85
8
0
15 Sep 2024
Spatio-Temporal Graphical Counterfactuals: An Overview
Spatio-Temporal Graphical Counterfactuals: An Overview
Mingyu Kang
Duxin Chen
Ziyuan Pu
Jianxi Gao
Wenwu Yu
CML
35
1
0
02 Jul 2024
Detecting and Identifying Selection Structure in Sequential Data
Detecting and Identifying Selection Structure in Sequential Data
Yujia Zheng
Zeyu Tang
Yiwen Qiu
Bernhard Schölkopf
Kun Zhang
CML
23
3
0
29 Jun 2024
Causal Inference with Latent Variables: Recent Advances and Future
  Prospectives
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng R. Li
Jundong Li
CML
37
3
0
20 Jun 2024
On the Recoverability of Causal Relations from Temporally Aggregated
  I.I.D. Data
On the Recoverability of Causal Relations from Temporally Aggregated I.I.D. Data
Shunxing Fan
Mingming Gong
Kun Zhang
21
1
0
04 Jun 2024
Causal Discovery with Fewer Conditional Independence Tests
Causal Discovery with Fewer Conditional Independence Tests
Kirankumar Shiragur
Jiaqi Zhang
Caroline Uhler
CML
25
1
0
03 Jun 2024
Dynamic Structural Causal Models
Dynamic Structural Causal Models
Philip A. Boeken
Joris M. Mooij
39
2
0
03 Jun 2024
Automating the Selection of Proxy Variables of Unmeasured Confounders
Automating the Selection of Proxy Variables of Unmeasured Confounders
Feng Xie
Zhengming Chen
Shanshan Luo
Wang Miao
Ruichu Cai
Zhi Geng
CML
24
2
0
25 May 2024
Spatio-temporal Value Semantics-based Abstraction for Dense Deep
  Reinforcement Learning
Spatio-temporal Value Semantics-based Abstraction for Dense Deep Reinforcement Learning
Jihui Nie
Dehui Du
Jiangnan Zhao
AI4CE
21
0
0
24 May 2024
The Causal Chambers: Real Physical Systems as a Testbed for AI
  Methodology
The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
Juan L. Gamella
Jonas Peters
Peter Buhlmann
80
8
0
17 Apr 2024
Causal Discovery from Poisson Branching Structural Causal Model Using
  High-Order Cumulant with Path Analysis
Causal Discovery from Poisson Branching Structural Causal Model Using High-Order Cumulant with Path Analysis
Jie Qiao
Yu Xiang
Zhengming Chen
Ruichu Cai
Zhifeng Hao
23
1
0
25 Mar 2024
Recursive Causal Discovery
Recursive Causal Discovery
Ehsan Mokhtarian
Sepehr Elahi
S. Akbari
Negar Kiyavash
CML
33
0
0
14 Mar 2024
Membership Testing in Markov Equivalence Classes via Independence Query
  Oracles
Membership Testing in Markov Equivalence Classes via Independence Query Oracles
Jiaqi Zhang
Kirankumar Shiragur
Caroline Uhler
CML
51
0
0
09 Mar 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
Generalization of LiNGAM that allows confounding
Generalization of LiNGAM that allows confounding
Joe Suzuki
Tian-Le Yang
24
1
0
30 Jan 2024
On the Three Demons in Causality in Finance: Time Resolution,
  Nonstationarity, and Latent Factors
On the Three Demons in Causality in Finance: Time Resolution, Nonstationarity, and Latent Factors
Xinshuai Dong
Haoyue Dai
Yewen Fan
Songyao Jin
Sathyamoorthy Rajendran
Kun Zhang
CML
29
1
0
28 Dec 2023
Effective Causal Discovery under Identifiable Heteroscedastic Noise
  Model
Effective Causal Discovery under Identifiable Heteroscedastic Noise Model
Naiyu Yin
Tian Gao
Yue Yu
Qiang Ji
CML
19
1
0
20 Dec 2023
Identification of Causal Structure with Latent Variables Based on Higher
  Order Cumulants
Identification of Causal Structure with Latent Variables Based on Higher Order Cumulants
Wei Chen
Zhiyi Huang
Ruichu Cai
Zhifeng Hao
Kun Zhang
CML
15
3
0
19 Dec 2023
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
  Variables
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Xinshuai Dong
Biwei Huang
Ignavier Ng
Xiangchen Song
Yujia Zheng
Songyao Jin
Roberto Legaspi
Peter Spirtes
Kun Zhang
BDL
CML
19
10
0
18 Dec 2023
Federated Causality Learning with Explainable Adaptive Optimization
Federated Causality Learning with Explainable Adaptive Optimization
Dezhi Yang
Xintong He
Jun Wang
Guoxian Yu
C. Domeniconi
Jinglin Zhang
FedML
CML
17
6
0
09 Dec 2023
Causal Fairness-Guided Dataset Reweighting using Neural Networks
Causal Fairness-Guided Dataset Reweighting using Neural Networks
Xuan Zhao
Klaus Broelemann
Salvatore Ruggieri
Gjergji Kasneci
11
1
0
17 Nov 2023
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Yeshu Li
Brian D. Ziebart
OOD
19
0
0
10 Nov 2023
Recovering Linear Causal Models with Latent Variables via Cholesky
  Factorization of Covariance Matrix
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
19
1
0
01 Nov 2023
Generalized Independent Noise Condition for Estimating Causal Structure
  with Latent Variables
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables
Feng Xie
Biwei Huang
Zhen Chen
Ruichu Cai
Clark Glymour
Zhi Geng
Kun Zhang
CML
20
5
0
13 Aug 2023
Causal-learn: Causal Discovery in Python
Causal-learn: Causal Discovery in Python
Yujia Zheng
Biwei Huang
Wei Chen
Joseph Ramsey
Mingming Gong
Ruichu Cai
Shohei Shimizu
Peter Spirtes
Kun Zhang
CML
21
64
0
31 Jul 2023
UPREVE: An End-to-End Causal Discovery Benchmarking System
UPREVE: An End-to-End Causal Discovery Benchmarking System
Suraj Jyothi Unni
Paras Sheth
Kaize Ding
Huan Liu
K. S. Candan
CML
29
0
0
25 Jul 2023
Self-Compatibility: Evaluating Causal Discovery without Ground Truth
Self-Compatibility: Evaluating Causal Discovery without Ground Truth
P. M. Faller
L. C. Vankadara
Atalanti A. Mastakouri
Francesco Locatello
Dominik Janzing Karlsruhe Institute of Technology
CML
11
14
0
18 Jul 2023
Causal Discovery with Language Models as Imperfect Experts
Causal Discovery with Language Models as Imperfect Experts
Stephanie Long
Alexandre Piché
Valentina Zantedeschi
Tibor Schuster
Alexandre Drouin
CML
8
36
0
05 Jul 2023
Causal Structure Learning by Using Intersection of Markov Blankets
Causal Structure Learning by Using Intersection of Markov Blankets
Yiran Dong
Chuanhou Gao
CML
15
0
0
01 Jul 2023
Discovering Dynamic Causal Space for DAG Structure Learning
Discovering Dynamic Causal Space for DAG Structure Learning
F. Liu
Wenchang Ma
An Zhang
Xiang Wang
Yueqi Duan
Tat-Seng Chua
OOD
CML
11
2
0
05 Jun 2023
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin
  Representation
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
Wanpeng Zhang
Yilin Li
Boyu Yang
Zongqing Lu
CML
10
0
0
05 Jun 2023
From Temporal to Contemporaneous Iterative Causal Discovery in the
  Presence of Latent Confounders
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
Gal Novik
CML
17
10
0
01 Jun 2023
Causal Discovery with Latent Confounders Based on Higher-Order Cumulants
Causal Discovery with Latent Confounders Based on Higher-Order Cumulants
Ruichu Cai
Zhiyi Huang
Wei-Neng Chen
Z. Hao
Kun Zhang
CML
22
9
0
31 May 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
35
72
0
21 May 2023
A Survey on Causal Discovery: Theory and Practice
A Survey on Causal Discovery: Theory and Practice
Alessio Zanga
Fabio Stella
CML
24
37
0
17 May 2023
Open problems in causal structure learning: A case study of COVID-19 in
  the UK
Open problems in causal structure learning: A case study of COVID-19 in the UK
Anthony C. Constantinou
N. K. Kitson
Yang Liu
Kiattikun Chobtham
Arian Hashemzadeh
Praharsh Nanavati
R. Mbuvha
Bruno Petrungaro
CML
21
9
0
05 May 2023
On the Unlikelihood of D-Separation
On the Unlikelihood of D-Separation
Itai Feigenbaum
Haiquan Wang
Shelby Heinecke
Juan Carlos Niebles
Weiran Yao
Caiming Xiong
Devansh Arpit
CML
20
1
0
10 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
24
5
0
06 Mar 2023
A Survey on Causal Reinforcement Learning
A Survey on Causal Reinforcement Learning
Yan Zeng
Ruichu Cai
Fuchun Sun
Libo Huang
Z. Hao
CML
26
27
0
10 Feb 2023
123
Next