ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.2686
  4. Cited By
Covariance Estimation in High Dimensions via Kronecker Product
  Expansions

Covariance Estimation in High Dimensions via Kronecker Product Expansions

12 February 2013
Theodoros Tsiligkaridis
Alfred Hero
ArXivPDFHTML

Papers citing "Covariance Estimation in High Dimensions via Kronecker Product Expansions"

16 / 16 papers shown
Title
Structured Low-Rank Tensors for Generalized Linear Models
Structured Low-Rank Tensors for Generalized Linear Models
Batoul Taki
Anand D. Sarwate
W. Bajwa
26
2
0
05 Aug 2023
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Runshi Tang
M. Yuan
Anru R. Zhang
45
3
0
02 Jul 2023
On Separability of Covariance in Multiway Data Analysis
On Separability of Covariance in Multiway Data Analysis
Dogyoon Song
Alfred Hero
21
0
0
05 Feb 2023
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
A. Maurais
Terrence Alsup
Benjamin Peherstorfer
Youssef Marzouk
28
7
0
31 Jan 2023
Learning Product Graphs from Spectral Templates
Learning Product Graphs from Spectral Templates
A. Einizade
S. H. Sardouie
30
6
0
05 Nov 2022
Scalable Bigraphical Lasso: Two-way Sparse Network Inference for Count
  Data
Scalable Bigraphical Lasso: Two-way Sparse Network Inference for Count Data
Sijia Li
Martín López-García
Neil D. Lawrence
Luisa Cutillo
32
5
0
15 Mar 2022
Multiway Ensemble Kalman Filter
Multiway Ensemble Kalman Filter
Yu Wang
Alfred Hero
18
1
0
08 Dec 2021
Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding
  problem
Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding problem
Jérémy E. Cohen
16
0
0
24 Nov 2021
Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression
  Models in Neuroimaging
Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
Ali Hashemi
Yijing Gao
Chang Cai
Sanjay Ghosh
Klaus-Robert Muller
S. Nagarajan
Stefan Haufe
32
8
0
02 Nov 2021
Guaranteed Functional Tensor Singular Value Decomposition
Guaranteed Functional Tensor Singular Value Decomposition
Rungang Han
Pixu Shi
Anru R. Zhang
34
20
0
09 Aug 2021
Detection thresholds in very sparse matrix completion
Detection thresholds in very sparse matrix completion
C. Bordenave
Simon Coste
R. Nadakuditi
22
25
0
12 May 2020
Autoregressive Identification of Kronecker Graphical Models
Autoregressive Identification of Kronecker Graphical Models
Mattia Zorzi
27
16
0
29 Apr 2020
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis
  and Algorithms
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis and Algorithms
Mohsen Ghassemi
Z. Shakeri
Anand D. Sarwate
W. Bajwa
22
16
0
22 Mar 2019
STARK: Structured Dictionary Learning Through Rank-one Tensor Recovery
STARK: Structured Dictionary Learning Through Rank-one Tensor Recovery
Mohsen Ghassemi
Z. Shakeri
Anand D. Sarwate
W. Bajwa
20
20
0
13 Nov 2017
Matrix-normal models for fMRI analysis
Matrix-normal models for fMRI analysis
Michael Shvartsman
N. Sundaram
Mikio C. Aoi
Adam Charles
Theodore L. Willke
Jonathan Cohen
15
14
0
08 Nov 2017
Robust SAR STAP via Kronecker Decomposition
Robust SAR STAP via Kronecker Decomposition
Kristjan Greenewald
E. Zelnio
Alfred Hero
33
24
0
05 May 2016
1