ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.0261
  4. Cited By
The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms

The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms

1 February 2013
F. Bunea
Johannes Lederer
Yiyuan She
ArXivPDFHTML

Papers citing "The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms"

14 / 14 papers shown
Title
A unified consensus-based parallel ADMM algorithm for high-dimensional
  regression with combined regularizations
A unified consensus-based parallel ADMM algorithm for high-dimensional regression with combined regularizations
Xiaofei Wu
Zhimin Zhang
Zhenyu Cui
8
3
0
21 Nov 2023
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
OffRL
38
6
0
01 Feb 2022
Distributionally Robust Learning
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
32
65
0
20 Aug 2021
Robust Grouped Variable Selection Using Distributionally Robust
  Optimization
Robust Grouped Variable Selection Using Distributionally Robust Optimization
Ruidi Chen
I. Paschalidis
OOD
25
3
0
10 Jun 2020
Inference for high-dimensional instrumental variables regression
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
27
37
0
18 Aug 2017
Distributionally Robust Groupwise Regularization Estimator
Distributionally Robust Groupwise Regularization Estimator
Jose H. Blanchet
Yang Kang
OOD
19
23
0
11 May 2017
Balancing Statistical and Computational Precision: A General Theory and
  Applications to Sparse Regression
Balancing Statistical and Computational Precision: A General Theory and Applications to Sparse Regression
Mahsa Taheri
Néhémy Lim
Johannes Lederer
30
3
0
23 Sep 2016
Oracle Inequalities for High-dimensional Prediction
Oracle Inequalities for High-dimensional Prediction
Johannes Lederer
Lu Yu
Irina Gaynanova
34
24
0
01 Aug 2016
A Sparse Linear Model and Significance Test for Individual Consumption
  Prediction
A Sparse Linear Model and Significance Test for Individual Consumption Prediction
P. Li
Baosen Zhang
Yang Weng
Ram Rajagopal
16
40
0
05 Nov 2015
The Benefit of Group Sparsity in Group Inference with De-biased Scaled
  Group Lasso
The Benefit of Group Sparsity in Group Inference with De-biased Scaled Group Lasso
Ritwik Mitra
Cun-Hui Zhang
62
46
0
13 Dec 2014
Optimal Two-Step Prediction in Regression
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
42
19
0
18 Oct 2014
Adaptive Estimation in Two-way Sparse Reduced-rank Regression
Adaptive Estimation in Two-way Sparse Reduced-rank Regression
Zhuang Ma
Zongming Ma
Tingni Sun
54
34
0
08 Mar 2014
Oracle Inequalities and Optimal Inference under Group Sparsity
Oracle Inequalities and Optimal Inference under Group Sparsity
Karim Lounici
Massimiliano Pontil
Alexandre B. Tsybakov
Sara van de Geer
133
380
0
11 Jul 2010
High-dimensional additive modeling
High-dimensional additive modeling
L. Meier
Sara van de Geer
Peter Buhlmann
201
481
0
25 Jun 2008
1