ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.6585
  4. Cited By
Can local particle filters beat the curse of dimensionality?

Can local particle filters beat the curse of dimensionality?

28 January 2013
Patrick Rebeschini
R. Handel
ArXivPDFHTML

Papers citing "Can local particle filters beat the curse of dimensionality?"

25 / 75 papers shown
Title
Ergodicity and Accuracy of Optimal Particle Filters for Bayesian Data
  Assimilation
Ergodicity and Accuracy of Optimal Particle Filters for Bayesian Data Assimilation
David Kelly
Andrew M. Stuart
21
4
0
26 Nov 2016
Online Maximum Likelihood Estimation of the Parameters of Partially
  Observed Diffusion Processes
Online Maximum Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes
S. C. Surace
J. Pfister
16
28
0
01 Nov 2016
Localization in High-Dimensional Monte Carlo Filtering
Localization in High-Dimensional Monte Carlo Filtering
Sylvain Robert
H. Kunsch
19
3
0
12 Oct 2016
Iterative importance sampling algorithms for parameter estimation
Iterative importance sampling algorithms for parameter estimation
M. Morzfeld
M. Day
R. Grout
G. Pau
S. Finsterle
J. Bell
13
20
0
05 Aug 2016
Particle Filtering with Invertible Particle Flow
Particle Filtering with Invertible Particle Flow
Yunpeng Li
Mark J. Coates
23
63
0
29 Jul 2016
Approximate Smoothing and Parameter Estimation in High-Dimensional
  State-Space Models
Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
Axel Finke
Sumeetpal S. Singh
42
16
0
28 Jun 2016
Learning a Tree-Structured Ising Model in Order to Make Predictions
Learning a Tree-Structured Ising Model in Order to Make Predictions
Guy Bresler
Mina Karzand
55
46
0
22 Apr 2016
Grid Based Nonlinear Filtering Revisited: Recursive Estimation &
  Asymptotic Optimality
Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality
Dionysios S. Kalogerias
Athina P. Petropulu
13
17
0
10 Apr 2016
State Space Model based Trust Evaluation over Wireless Sensor Networks:
  An Iterative Particle Filter Approach
State Space Model based Trust Evaluation over Wireless Sensor Networks: An Iterative Particle Filter Approach
Bin Liu
Shi Cheng
19
9
0
02 Apr 2016
What the collapse of the ensemble Kalman filter tells us about particle
  filters
What the collapse of the ensemble Kalman filter tells us about particle filters
M. Morzfeld
D. Hodyss
C. Snyder
14
39
0
11 Dec 2015
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
17
158
0
19 Nov 2015
Scalable inference for a full multivariate stochastic volatility model
Scalable inference for a full multivariate stochastic volatility model
P. Dellaportas
A. Plataniotis
Michalis K. Titsias
16
4
0
18 Oct 2015
Three discussions of the paper "sequential quasi-Monte Carlo sampling",
  by M. Gerber and N. Chopin
Three discussions of the paper "sequential quasi-Monte Carlo sampling", by M. Gerber and N. Chopin
Mathieu Gerber
Igor Prunster
N. Chopin
Robin J. Ryder
26
69
0
24 May 2015
Sequential Bayesian inference for implicit hidden Markov models and
  current limitations
Sequential Bayesian inference for implicit hidden Markov models and current limitations
Pierre E. Jacob
28
15
0
16 May 2015
Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian
  Filtering in High-dimensional Spaces
Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces
F. Septier
G. Peters
24
57
0
22 Apr 2015
Nested Sequential Monte Carlo Methods
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
37
83
0
09 Feb 2015
Sequential Monte Carlo Methods for Bayesian Elliptic Inverse Problems
Sequential Monte Carlo Methods for Bayesian Elliptic Inverse Problems
A. Beskos
Ajay Jasra
Ege A. Muzaffer
Andrew M. Stuart
26
72
0
15 Dec 2014
A Stable Particle Filter in High-Dimensions
A Stable Particle Filter in High-Dimensions
A. Beskos
Dan Crisan
Ajay Jasra
K. Kamatani
Yan Zhou
40
35
0
11 Dec 2014
Asymptotically Optimal Discrete Time Nonlinear Filters From
  Stochastically Convergent State Process Approximations
Asymptotically Optimal Discrete Time Nonlinear Filters From Stochastically Convergent State Process Approximations
Dionysios S. Kalogerias
Athina P. Petropulu
21
6
0
25 Nov 2014
Qualitative Robustness in Bayesian Inference
Qualitative Robustness in Bayesian Inference
H. Owhadi
C. Scovel
40
26
0
14 Nov 2014
Divide-and-Conquer with Sequential Monte Carlo
Divide-and-Conquer with Sequential Monte Carlo
Fredrik Lindsten
A. M. Johansen
C. A. Naesseth
Bonnie Kirkpatrick
Thomas B. Schon
J. Aston
Alexandre Bouchard-Coté
32
44
0
19 Jun 2014
Comparison Theorems for Gibbs Measures
Comparison Theorems for Gibbs Measures
Patrick Rebeschini
R. Handel
21
15
0
19 Aug 2013
Fighting Sample Degeneracy and Impoverishment in Particle Filters: A
  Review of Intelligent Approaches
Fighting Sample Degeneracy and Impoverishment in Particle Filters: A Review of Intelligent Approaches
Tiancheng Li
Shudong Sun
T. Sattar
J. Corchado
51
224
0
12 Aug 2013
Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A
  case study for the Navier-Stokes equations
Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A case study for the Navier-Stokes equations
N. Kantas
A. Beskos
Ajay Jasra
38
100
0
23 Jul 2013
Sharp failure rates for the bootstrap particle filter in high dimensions
Sharp failure rates for the bootstrap particle filter in high dimensions
Peter J. Bickel
Bo Li
T. Bengtsson
69
198
0
21 May 2008
Previous
12