ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.4321
  4. Cited By
Asymptotic analysis of the role of spatial sampling for covariance
  parameter estimation of Gaussian processes

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

18 January 2013
F. Bachoc
ArXivPDFHTML

Papers citing "Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes"

10 / 10 papers shown
Title
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
F. Bachoc
44
1
0
26 Apr 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
23
0
0
31 Dec 2023
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
F. Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
34
7
0
12 Oct 2022
Accelerating hypersonic reentry simulations using deep learning-based
  hybridization (with guarantees)
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)
Paul Novello
Gaël Poëtte
D. Lugato
S. Peluchon
P. Congedo
AI4CE
19
7
0
27 Sep 2022
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
21
1
0
16 Sep 2022
Bounds in $L^1$ Wasserstein distance on the normal approximation of
  general M-estimators
Bounds in L1L^1L1 Wasserstein distance on the normal approximation of general M-estimators
F. Bachoc
M. Fathi
17
0
0
18 Nov 2021
Semi-parametric estimation of the variogram of a Gaussian process with
  stationary increments
Semi-parametric estimation of the variogram of a Gaussian process with stationary increments
Jean-marc Azais
F. Bachoc
A. Lagnoux
Thi Mong Ngoc Nguyen
22
3
0
08 Jun 2018
Improvement of code behaviour in a design of experiments by metamodeling
Improvement of code behaviour in a design of experiments by metamodeling
F. Bachoc
Jean-Marc Martinez
K. Ammar
AI4CE
17
13
0
10 Nov 2015
Polynomial-Chaos-based Kriging
Polynomial-Chaos-based Kriging
R. Schöbi
Bruno Sudret
J. Wiart
32
269
0
13 Feb 2015
Asymptotic analysis of covariance parameter estimation for Gaussian
  processes in the misspecified case
Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case
F. Bachoc
18
31
0
05 Dec 2014
1