ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.1459
  4. Cited By
A proximal Newton framework for composite minimization: Graph learning
  without Cholesky decompositions and matrix inversions

A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions

8 January 2013
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
ArXivPDFHTML

Papers citing "A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions"

6 / 6 papers shown
Title
Fast Projected Newton-like Method for Precision Matrix Estimation under
  Total Positivity
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Jian-Feng Cai
José Vinícius de Miranda Cardoso
Daniel P. Palomar
Jiaxi Ying
35
10
0
03 Dec 2021
Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
  Graphical Models?
Does the ℓ1\ell_1ℓ1​-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
18
10
0
26 Jun 2020
Self-Concordant Analysis of Frank-Wolfe Algorithms
Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechensky
P. Ostroukhov
K. Safin
Shimrit Shtern
Mathias Staudigl
19
24
0
11 Feb 2020
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
19
60
0
14 Mar 2017
Dropping Convexity for Faster Semi-definite Optimization
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
27
172
0
14 Sep 2015
Composite Self-Concordant Minimization
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
43
94
0
13 Aug 2013
1