Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.1459
Cited By
A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
8 January 2013
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions"
6 / 6 papers shown
Title
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Jian-Feng Cai
José Vinícius de Miranda Cardoso
Daniel P. Palomar
Jiaxi Ying
35
10
0
03 Dec 2021
Does the
ℓ
1
\ell_1
ℓ
1
-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
18
10
0
26 Jun 2020
Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechensky
P. Ostroukhov
K. Safin
Shimrit Shtern
Mathias Staudigl
19
24
0
11 Feb 2020
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
19
60
0
14 Mar 2017
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
27
172
0
14 Sep 2015
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
43
94
0
13 Aug 2013
1