ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.0015
  4. Cited By
Bethe Bounds and Approximating the Global Optimum

Bethe Bounds and Approximating the Global Optimum

31 December 2012
Adrian Weller
Tony Jebara
ArXiv (abs)PDFHTML

Papers citing "Bethe Bounds and Approximating the Global Optimum"

8 / 8 papers shown
Title
An Empirical Analysis of Likelihood-Weighting Simulation on a Large,
  Multiply-Connected Belief Network
An Empirical Analysis of Likelihood-Weighting Simulation on a Large, Multiply-Connected Belief Network
M. Shwe
G. Cooper
107
89
0
27 Mar 2013
Belief Optimization for Binary Networks: A Stable Alternative to Loopy
  Belief Propagation
Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation
Max Welling
Yee Whye Teh
99
116
0
10 Jan 2013
A New Class of Upper Bounds on the Log Partition Function
A New Class of Upper Bounds on the Log Partition Function
Martin J. Wainwright
Tommi Jaakkola
A. Willsky
96
459
0
12 Dec 2012
Accuracy Bounds for Belief Propagation
Accuracy Bounds for Belief Propagation
Alexander Ihler
72
41
0
20 Jun 2012
Constrained Approximate Maximum Entropy Learning of Markov Random Fields
Constrained Approximate Maximum Entropy Learning of Markov Random Fields
Varun Ganapathi
David Vickrey
John C. Duchi
D. Koller
72
37
0
13 Jun 2012
What Cannot be Learned with Bethe Approximations
What Cannot be Learned with Bethe Approximations
Uri Heinemann
Amir Globerson
67
27
0
14 Feb 2012
Bound Propagation
Bound Propagation
H. Kappen
Martijn A. R. Leisink
94
31
0
24 Jun 2011
Variational Probabilistic Inference and the QMR-DT Network
Variational Probabilistic Inference and the QMR-DT Network
Tommi Jaakkola
Michael I. Jordan
BDL
117
202
0
27 May 2011
1