ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.2228
  4. Cited By
Gradient-based stochastic optimization methods in Bayesian experimental
  design

Gradient-based stochastic optimization methods in Bayesian experimental design

10 December 2012
Xun Huan
Youssef M. Marzouk
ArXivPDFHTML

Papers citing "Gradient-based stochastic optimization methods in Bayesian experimental design"

3 / 3 papers shown
Title
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
Joey Wilson
Marcelino Almeida
Sachit Mahajan
Martin Labrie
Maani Ghaffari
Omid Ghasemalizadeh
Min Sun
Cheng-Hao Kuo
Arnab Sen
3DGS
117
0
0
10 Mar 2025
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
144
8
0
08 Apr 2024
Simulation-based optimal Bayesian experimental design for nonlinear
  systems
Simulation-based optimal Bayesian experimental design for nonlinear systems
Xun Huan
Youssef M. Marzouk
81
429
0
20 Aug 2011
1