ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.1197
  4. Cited By
Needles and Straw in a Haystack: Posterior concentration for possibly
  sparse sequences

Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences

6 November 2012
I. Castillo
A. van der Vaart
ArXivPDFHTML

Papers citing "Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences"

23 / 23 papers shown
Title
On high-dimensional classification by sparse generalized Bayesian
  logistic regression
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
46
1
0
19 Mar 2024
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Veronika Rockova
6
0
0
05 Sep 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
51
1
0
25 May 2023
Empirical Bayes inference in sparse high-dimensional generalized linear
  models
Empirical Bayes inference in sparse high-dimensional generalized linear models
Yiqi Tang
Ryan Martin
27
3
0
14 Mar 2023
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Dapeng Yao
Fangzheng Xie
Yanxun Xu
26
1
0
21 Jul 2022
Scalable Spike-and-Slab
Scalable Spike-and-Slab
N. Biswas
Lester W. Mackey
Xiao-Li Meng
GP
27
11
0
04 Apr 2022
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview,
  Implementation, and Applications
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
17
17
0
28 Jan 2022
Semiparametric discrete data regression with Monte Carlo inference and
  prediction
Semiparametric discrete data regression with Monte Carlo inference and prediction
Daniel R. Kowal
Bo-Hong Wu
21
3
0
23 Oct 2021
Spike and slab variational Bayes for high dimensional logistic
  regression
Spike and slab variational Bayes for high dimensional logistic regression
Kolyan Ray
Botond Szabó
Gabriel Clara
33
28
0
22 Oct 2020
On the cost of Bayesian posterior mean strategy for log-concave models
On the cost of Bayesian posterior mean strategy for log-concave models
S. Gadat
Fabien Panloup
Clément Pellegrini
15
7
0
08 Oct 2020
Optimal Bayesian estimation of Gaussian mixtures with growing number of
  components
Optimal Bayesian estimation of Gaussian mixtures with growing number of components
Ilsang Ohn
Lizhen Lin
36
17
0
17 Jul 2020
Nonasymptotic Laplace approximation under model misspecification
Nonasymptotic Laplace approximation under model misspecification
A. Bhattacharya
D. Pati
11
1
0
16 May 2020
Posterior Concentration for Sparse Deep Learning
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
28
87
0
24 Mar 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
On the frequentist validity of Bayesian limits
On the frequentist validity of Bayesian limits
B. Kleijn
11
15
0
25 Nov 2016
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Minwoo Chae
Lizhen Lin
David B. Dunson
31
15
0
06 Aug 2016
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
25
71
0
07 Jul 2016
Needles and straw in a haystack: robust confidence for possibly sparse
  sequences
Needles and straw in a haystack: robust confidence for possibly sparse sequences
E. Belitser
N. Nurushev
20
24
0
05 Nov 2015
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
27
175
0
15 Jun 2015
A General Framework for Bayes Structured Linear Models
A General Framework for Bayes Structured Linear Models
Chao Gao
A. van der Vaart
Harrison H. Zhou
32
57
0
06 Jun 2015
Optimal Bayesian estimation in stochastic block models
Optimal Bayesian estimation in stochastic block models
D. Pati
A. Bhattacharya
26
7
0
26 May 2015
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
35
165
0
01 Apr 2014
Rate-optimal posterior contraction for sparse PCA
Rate-optimal posterior contraction for sparse PCA
Chao Gao
Harrison H. Zhou
46
35
0
30 Nov 2013
1