ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1209.2139
  4. Cited By
Fused Multiple Graphical Lasso
v1v2 (latest)

Fused Multiple Graphical Lasso

10 September 2012
Sen Yang
Zhaosong Lu
Xiaotong Shen
Peter Wonka
Jieping Ye
ArXiv (abs)PDFHTML

Papers citing "Fused Multiple Graphical Lasso"

13 / 13 papers shown
Title
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Chengjing Wang
Peipei Tang
Wen-Bin He
Meixia Lin
68
0
0
17 Aug 2023
Practical Inexact Proximal Quasi-Newton Method with Global Complexity
  Analysis
Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis
K. Scheinberg
Xiaocheng Tang
78
82
0
26 Nov 2013
Sparse Inverse Covariance Matrix Estimation Using Quadratic
  Approximation
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
66
344
0
13 Jun 2013
A proximal Newton framework for composite minimization: Graph learning
  without Cholesky decompositions and matrix inversions
A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
64
29
0
08 Jan 2013
Proximal Newton-type methods for minimizing composite functions
Proximal Newton-type methods for minimizing composite functions
Jason D. Lee
Yuekai Sun
M. Saunders
84
305
0
07 Jun 2012
The Graphical Lasso: New Insights and Alternatives
The Graphical Lasso: New Insights and Alternatives
Rahul Mazumder
Trevor Hastie
101
289
0
23 Nov 2011
Exact covariance thresholding into connected components for large-scale
  Graphical Lasso
Exact covariance thresholding into connected components for large-scale Graphical Lasso
Rahul Mazumder
Trevor Hastie
100
232
0
18 Aug 2011
Sparse Inverse Covariance Selection via Alternating Linearization
  Methods
Sparse Inverse Covariance Selection via Alternating Linearization Methods
K. Scheinberg
Shiqian Ma
D. Goldfarb
CML
162
198
0
30 Oct 2010
Stability Approach to Regularization Selection (StARS) for High
  Dimensional Graphical Models
Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models
Han Liu
Kathryn Roeder
Larry A. Wasserman
118
485
0
16 Jun 2010
An Augmented Lagrangian Approach for Sparse Principal Component Analysis
An Augmented Lagrangian Approach for Sparse Principal Component Analysis
Zhaosong Lu
Yong Zhang
89
127
0
13 Jul 2009
Adaptive First-Order Methods for General Sparse Inverse Covariance
  Selection
Adaptive First-Order Methods for General Sparse Inverse Covariance Selection
Zhaosong Lu
76
49
0
04 Apr 2009
Smooth Optimization Approach for Sparse Covariance Selection
Smooth Optimization Approach for Sparse Covariance Selection
Zhaosong Lu
94
30
0
04 Apr 2009
Estimating time-varying networks
Estimating time-varying networks
Mladen Kolar
Le Song
Amr Ahmed
Eric Xing
AI4TS
122
312
0
30 Dec 2008
1