Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.2944
Cited By
Practical Bayesian Optimization of Machine Learning Algorithms
13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Bayesian Optimization of Machine Learning Algorithms"
50 / 2,248 papers shown
Title
Hyper-Parameter Optimization: A Review of Algorithms and Applications
Tong Yu
Hong Zhu
AAML
21
522
0
12 Mar 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
29
54
0
10 Mar 2020
Time-varying Gaussian Process Bandit Optimization with Non-constant Evaluation Time
Hideaki Imamura
Nontawat Charoenphakdee
Futoshi Futami
Issei Sato
Junya Honda
Masashi Sugiyama
33
3
0
10 Mar 2020
Cloth in the Wind: A Case Study of Physical Measurement through Simulation
Tom F. H. Runia
Kirill Gavrilyuk
Cees G. M. Snoek
A. Smeulders
19
28
0
09 Mar 2020
QTIP: Quick simulation-based adaptation of Traffic model per Incident Parameters
Inon Peled
R. Kamalakar
Carlos Lima Azevedo
Francisco Câmara Pereira
16
4
0
09 Mar 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
44
221
0
06 Mar 2020
Data-efficient Domain Randomization with Bayesian Optimization
Fabio Muratore
C. Eilers
Michael Gienger
Jan Peters
OOD
78
78
0
05 Mar 2020
On Hyper-parameter Tuning for Stochastic Optimization Algorithms
Haotian Zhang
Jianyong Sun
Zongben Xu
14
0
0
04 Mar 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
40
51
0
04 Mar 2020
Traversing the Reality Gap via Simulator Tuning
J. Collins
Ross Brown
Jurgen Leitner
David Howard
41
14
0
03 Mar 2020
Robust Policy Search for Robot Navigation
Javier Garcia-Barcos
Ruben Martinez-Cantin
21
3
0
02 Mar 2020
A Self-Tuning Actor-Critic Algorithm
Tom Zahavy
Zhongwen Xu
Vivek Veeriah
Matteo Hessel
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
28
13
0
28 Feb 2020
Using a thousand optimization tasks to learn hyperparameter search strategies
Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
20
46
0
27 Feb 2020
Machine Learning based prediction of noncentrosymmetric crystal materials
Yuqi Song
Joseph Lindsay
Yong Zhao
Alireza Nasiri
Steph-Yves M. Louis
Jie Ling
Ming Hu
Jianjun Hu
25
21
0
26 Feb 2020
Incorporating Expert Prior Knowledge into Experimental Design via Posterior Sampling
Cheng Li
Sunil R. Gupta
Santu Rana
Vu Nguyen
A. Robles-Kelly
Svetha Venkatesh
10
15
0
26 Feb 2020
Efficient Rollout Strategies for Bayesian Optimization
E. Lee
David Eriksson
Bolong Cheng
M. McCourt
D. Bindel
21
24
0
24 Feb 2020
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
Niccolò Dalmasso
Rafael Izbicki
Ann B. Lee
22
20
0
24 Feb 2020
Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning
Ben Moews
Gbenga Ibikunle
AIFin
9
15
0
24 Feb 2020
Practical Bayesian Optimization of Objectives with Conditioning Variables
Michael Pearce
Janis Klaise
Matthew J. Groves
26
1
0
23 Feb 2020
Weighting Is Worth the Wait: Bayesian Optimization with Importance Sampling
Setareh Ariafar
Zelda E. Mariet
Ehsan Elhamifar
Dana Brooks
Jennifer Dy
Jasper Snoek
14
3
0
23 Feb 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
16
163
0
21 Feb 2020
Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand
Quentin Klopfenstein
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
40
64
0
20 Feb 2020
Do We Need Zero Training Loss After Achieving Zero Training Error?
Takashi Ishida
Ikko Yamane
Tomoya Sakai
Gang Niu
Masashi Sugiyama
AI4CE
49
135
0
20 Feb 2020
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
35
96
0
20 Feb 2020
Online Parameter Estimation for Safety-Critical Systems with Gaussian Processes
Mouhyemen Khan
A. Chatterjee
6
0
0
18 Feb 2020
Learning Adaptive Loss for Robust Learning with Noisy Labels
Jun Shu
Qian Zhao
Keyu Chen
Zongben Xu
Deyu Meng
NoLa
OOD
19
23
0
16 Feb 2020
Multi-Task Multicriteria Hyperparameter Optimization
Kirill Akhmetzyanov
A. Yuzhakov
6
3
0
15 Feb 2020
Effective Reinforcement Learning through Evolutionary Surrogate-Assisted Prescription
Olivier Francon
Santiago Gonzalez
B. Hodjat
Elliot Meyerson
Risto Miikkulainen
Xin Qiu
H. Shahrzad
26
16
0
13 Feb 2020
Regret Bounds for Noise-Free Kernel-Based Bandits
Sattar Vakili
41
3
0
12 Feb 2020
Learning to Compare for Better Training and Evaluation of Open Domain Natural Language Generation Models
Wangchunshu Zhou
Ke Xu
ELM
ALM
14
43
0
12 Feb 2020
Computing the racing line using Bayesian optimization
Achin Jain
M. Morari
37
33
0
12 Feb 2020
Debugging Machine Learning Pipelines
Raoni Lourenço
J. Freire
D. Shasha
AI4CE
21
28
0
11 Feb 2020
Regularized Evolutionary Population-Based Training
J. Liang
Santiago Gonzalez
H. Shahrzad
Risto Miikkulainen
22
9
0
11 Feb 2020
A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome Prediction
Hanbiehn Kim
Hieu Nguyen
Qingchu Jin
Sharmila Tamby
Tatiana Gelaf Romer
...
J. Greenstein
J. Suarez
C. Storm
R. Winslow
R. Stevens
39
6
0
09 Feb 2020
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
75
83
0
06 Feb 2020
ε
ε
ε
-shotgun:
ε
ε
ε
-greedy Batch Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
Alma A. M. Rahat
29
15
0
05 Feb 2020
BOFFIN TTS: Few-Shot Speaker Adaptation by Bayesian Optimization
Henry B. Moss
Vatsal Aggarwal
N. Prateek
Javier I. González
Roberto Barra-Chicote
BDL
14
57
0
04 Feb 2020
Automatic Pruning for Quantized Neural Networks
Luis Guerra
Bohan Zhuang
Ian Reid
Tom Drummond
MQ
22
21
0
03 Feb 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
78
111
0
31 Jan 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
27
56
0
29 Jan 2020
Reservoir computing model of two-dimensional turbulent convection
S. Pandey
J. Schumacher
27
40
0
28 Jan 2020
Feature selection in machine learning: Rényi min-entropy vs Shannon entropy
C. Palamidessi
Marco Romanelli
13
2
0
27 Jan 2020
Bayesian optimization for backpropagation in Monte-Carlo tree search
Yueqin Li
Nengli Lim
BDL
6
0
0
25 Jan 2020
Tuneful: An Online Significance-Aware Configuration Tuner for Big Data Analytics
Ayat Fekry
Lucian Carata
Thomas Pasquier
Andrew Rice
A. Hopper
45
16
0
22 Jan 2020
AutoFCL: Automatically Tuning Fully Connected Layers for Handling Small Dataset
S. H. Shabbeer Basha
Sravan Kumar Vinakota
S. Dubey
Viswanath Pulabaigari
Snehasis Mukherjee
19
4
0
22 Jan 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
26
25
0
22 Jan 2020
Learning Directed Locomotion in Modular Robots with Evolvable Morphologies
Gongjin Lan
Matteo De Carlo
Fuda van Diggelen
Jakub M. Tomczak
D. Roijers
A. E. Eiben
29
49
0
21 Jan 2020
Traffic Data Imputation using Deep Convolutional Neural Networks
O. Benkraouda
Bilal Thonnam Thodi
H. Yeo
M. Menéndez
Saif Eddin Jabari
11
28
0
21 Jan 2020
Bayesian Optimization for Policy Search in High-Dimensional Systems via Automatic Domain Selection
Lukas P. Frohlich
Edgar D. Klenske
Christian Daniel
Melanie Zeilinger
18
12
0
21 Jan 2020
Active Learning over DNN: Automated Engineering Design Optimization for Fluid Dynamics Based on Self-Simulated Dataset
Yang Chen
AI4CE
11
2
0
18 Jan 2020
Previous
1
2
3
...
27
28
29
...
43
44
45
Next