ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.2944
  4. Cited By
Practical Bayesian Optimization of Machine Learning Algorithms

Practical Bayesian Optimization of Machine Learning Algorithms

13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
ArXivPDFHTML

Papers citing "Practical Bayesian Optimization of Machine Learning Algorithms"

50 / 2,256 papers shown
Title
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Tengjiao Wang
35
34
0
08 Dec 2020
Quantum Circuit Design Search
Quantum Circuit Design Search
Mohammad Pirhooshyaran
T. Terlaky
21
37
0
07 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
35
74
0
07 Dec 2020
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation
Gengwei Zhang
Yiming Gao
Hang Xu
Hao Zhang
Zhenguo Li
Xiaodan Liang
SSeg
54
5
0
07 Dec 2020
SpotTune: Leveraging Transient Resources for Cost-efficient
  Hyper-parameter Tuning in the Public Cloud
SpotTune: Leveraging Transient Resources for Cost-efficient Hyper-parameter Tuning in the Public Cloud
Yan Li
Bo An
Junming Ma
Donggang Cao
Yasha Wang
Hong Mei
14
7
0
07 Dec 2020
Emulation as an Accurate Alternative to Interpolation in Sampling
  Radiative Transfer Codes
Emulation as an Accurate Alternative to Interpolation in Sampling Radiative Transfer Codes
J. Vicent
J. Verrelst
J. P. Rivera-Caicedo
Neus Sabater
Jordi Munoz-Marí
Gustau Camps-Valls
J. Moreno
9
25
0
07 Dec 2020
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Taehyeon Kim
Jaeyeon Ahn
Nakyil Kim
Seyoung Yun
41
3
0
07 Dec 2020
Bayesian optimization assisted unsupervised learning for efficient intra-tumor partitioning in MRI and survival prediction for glioblastoma patients
Yifan Li
Chao Li
S. Price
Carola-Bibiane Schönlieb
Xi Chen
24
0
0
05 Dec 2020
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
Yang Li
Yu Shen
Jiawei Jiang
Jinyang Gao
Ce Zhang
Tengjiao Wang
27
27
0
05 Dec 2020
Distributed Training and Optimization Of Neural Networks
Distributed Training and Optimization Of Neural Networks
J. Vlimant
Junqi Yin
AI4CE
14
2
0
03 Dec 2020
Cross-Correlation Based Discriminant Criterion for Channel Selection in
  Motor Imagery BCI Systems
Cross-Correlation Based Discriminant Criterion for Channel Selection in Motor Imagery BCI Systems
Jianli Yu
Z. Yu
11
17
0
03 Dec 2020
Machine learning prediction of critical transition and system collapse
Machine learning prediction of critical transition and system collapse
Ling-Wei Kong
Hua-wei Fan
C. Grebogi
Y. Lai
4
84
0
02 Dec 2020
VisEvol: Visual Analytics to Support Hyperparameter Search through
  Evolutionary Optimization
VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
Angelos Chatzimparmpas
Rafael M. Martins
Kostiantyn Kucher
Andreas Kerren
34
20
0
02 Dec 2020
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Shibo Li
Robert M. Kirby
Shandian Zhe
AI4CE
20
28
0
02 Dec 2020
NPAS: A Compiler-aware Framework of Unified Network Pruning and
  Architecture Search for Beyond Real-Time Mobile Acceleration
NPAS: A Compiler-aware Framework of Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration
Zhengang Li
Geng Yuan
Wei Niu
Pu Zhao
Yanyu Li
...
Sijia Liu
Kaiyuan Yang
Bin Ren
Yanzhi Wang
Xue Lin
MQ
41
27
0
01 Dec 2020
Combinatorial Bayesian Optimization with Random Mapping Functions to
  Convex Polytopes
Combinatorial Bayesian Optimization with Random Mapping Functions to Convex Polytopes
Jungtaek Kim
Seungjin Choi
Minsu Cho
56
6
0
26 Nov 2020
All You Need is a Good Functional Prior for Bayesian Deep Learning
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
31
56
0
25 Nov 2020
Hyper-parameter estimation method with particle swarm optimization
Hyper-parameter estimation method with particle swarm optimization
Yaru Li
Yulai Zhang
19
6
0
24 Nov 2020
Automatic Clustering for Unsupervised Risk Diagnosis of Vehicle Driving
  for Smart Road
Automatic Clustering for Unsupervised Risk Diagnosis of Vehicle Driving for Smart Road
Xiupeng Shi
Y. Wong
C. Chai
Michael Zhi-Feng Li
Tianyi Chen
Zengfeng Zeng
14
12
0
24 Nov 2020
Omni: Automated Ensemble with Unexpected Models against Adversarial
  Evasion Attack
Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack
Rui Shu
Tianpei Xia
Laurie A. Williams
Tim Menzies
AAML
37
16
0
23 Nov 2020
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian
  Optimization
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization
Gauthier Guinet
Valerio Perrone
Cédric Archambeau
16
14
0
23 Nov 2020
A Population-based Hybrid Approach to Hyperparameter Optimization for
  Neural Networks
A Population-based Hybrid Approach to Hyperparameter Optimization for Neural Networks
Marcello Serqueira
Israel Mendonça
Eduardo Bezerra
26
19
0
22 Nov 2020
Long Short Term Memory Networks for Bandwidth Forecasting in Mobile
  Broadband Networks under Mobility
Long Short Term Memory Networks for Bandwidth Forecasting in Mobile Broadband Networks under Mobility
Konstantinos Kousias
A. Pappas
Özgü Alay
A. Argyriou
Michael Riegler
22
1
0
20 Nov 2020
Challenges in Deploying Machine Learning: a Survey of Case Studies
Challenges in Deploying Machine Learning: a Survey of Case Studies
Andrei Paleyes
Raoul-Gabriel Urma
Neil D. Lawrence
30
391
0
18 Nov 2020
Identification of state functions by physically-guided neural networks
  with physically-meaningful internal layers
Identification of state functions by physically-guided neural networks with physically-meaningful internal layers
J. Ayensa-Jiménez
M. H. Doweidar
J. A. Sanz-Herrera
Manuel Doblaré
PINN
28
1
0
17 Nov 2020
Revisiting the Sample Complexity of Sparse Spectrum Approximation of
  Gaussian Processes
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
16
5
0
17 Nov 2020
Treatment Allocation with Strategic Agents
Treatment Allocation with Strategic Agents
Evan Munro
31
6
0
12 Nov 2020
Parameter Optimization for Loop Closure Detection in Closed Environments
Parameter Optimization for Loop Closure Detection in Closed Environments
Nils Rottmann
R. Bruder
Honghu Xue
A. Schweikard
Elmar Rueckert
16
1
0
12 Nov 2020
Building an Automated and Self-Aware Anomaly Detection System
Building an Automated and Self-Aware Anomaly Detection System
Sayan Chakraborty
Smit Shah
Kiumars Soltani
A. Swigart
Luyao Yang
Kyle Buckingham
AI4TS
6
7
0
10 Nov 2020
CircuitBot: Learning to Survive with Robotic Circuit Drawing
CircuitBot: Learning to Survive with Robotic Circuit Drawing
X. Tan
Weijie Lyu
A. Rosendo
SSL
14
1
0
10 Nov 2020
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud
  via Sub-Sampling
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
44
18
0
09 Nov 2020
A Learning-Based Tune-Free Control Framework for Large Scale Autonomous
  Driving System Deployment
A Learning-Based Tune-Free Control Framework for Large Scale Autonomous Driving System Deployment
Yu Wang
Shu Jiang
Weiman Lin
Yu Cao
Longtao Lin
Jiangtao Hu
Jinghao Miao
Qi Luo
29
3
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
25
58
0
08 Nov 2020
Predicting special care during the COVID-19 pandemic: A machine learning
  approach
Predicting special care during the COVID-19 pandemic: A machine learning approach
Vitor Bezzan
C. Rocco
8
12
0
06 Nov 2020
Bayesian Variational Optimization for Combinatorial Spaces
Bayesian Variational Optimization for Combinatorial Spaces
Tony C Wu
Daniel Flam-Shepherd
Alán Aspuru-Guzik
BDL
27
4
0
03 Nov 2020
Improved Max-value Entropy Search for Multi-objective Bayesian
  Optimization with Constraints
Improved Max-value Entropy Search for Multi-objective Bayesian Optimization with Constraints
Daniel Fernández-Sánchez
Eduardo C. Garrido-Merchán
Daniel Hernández-Lobato
25
31
0
02 Nov 2020
Improving Conversational Question Answering Systems after Deployment
  using Feedback-Weighted Learning
Improving Conversational Question Answering Systems after Deployment using Feedback-Weighted Learning
Jon Ander Campos
Kyunghyun Cho
Arantxa Otegi
Aitor Soroa Etxabe
Gorka Azkune
Eneko Agirre
27
6
0
01 Nov 2020
Black-Box Optimization of Object Detector Scales
Black-Box Optimization of Object Detector Scales
M. Muthuraja
Octavio Arriaga
Paul G. Plöger
Frank Kirchner
Matias Valdenegro-Toro
ObjD
9
0
0
29 Oct 2020
DeepFoldit -- A Deep Reinforcement Learning Neural Network Folding
  Proteins
DeepFoldit -- A Deep Reinforcement Learning Neural Network Folding Proteins
Dimitra N. Panou
M. Reczko
33
3
0
28 Oct 2020
Interpretable Data-Driven Demand Modelling for On-Demand Transit
  Services
Interpretable Data-Driven Demand Modelling for On-Demand Transit Services
Nael Alsaleh
Bilal Farooq
6
13
0
27 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
28
0
0
26 Oct 2020
Hyperparameter Transfer Across Developer Adjustments
Hyperparameter Transfer Across Developer Adjustments
Daniel Stoll
Jörg Franke
Diane Wagner
Simon Selg
Frank Hutter
32
12
0
25 Oct 2020
Mood Classification Using Listening Data
Mood Classification Using Listening Data
Filip Korzeniowski
Oriol Nieto
Matthew C. McCallum
Minz Won
Sergio Oramas
Erik M. Schmidt
33
12
0
22 Oct 2020
Complex data labeling with deep learning methods: Lessons from fisheries
  acoustics
Complex data labeling with deep learning methods: Lessons from fisheries acoustics
J. M. Sarr
T. Brochier
P. Brehmer
Y. Perrot
A. Bah
Abdoulaye Sarré
M. A. Jeyid
M. Sidibeh
S. E. Ayoubi
33
13
0
21 Oct 2020
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier
Leonel Rozo
43
24
0
21 Oct 2020
AutoML to Date and Beyond: Challenges and Opportunities
AutoML to Date and Beyond: Challenges and Opportunities
Shubhra (Santu) Karmaker
Md. Mahadi Hassan
Micah J. Smith
Lei Xu
Chengxiang Zhai
K. Veeramachaneni
80
228
0
21 Oct 2020
Financial Data Analysis Using Expert Bayesian Framework For Bankruptcy
  Prediction
Financial Data Analysis Using Expert Bayesian Framework For Bankruptcy Prediction
Amir Mukeri
H. Shaikh
D. Gaikwad
14
4
0
19 Oct 2020
Learning Locomotion Skills in Evolvable Robots
Learning Locomotion Skills in Evolvable Robots
Gongjin Lan
M. V. Hooft
Matteo De Carlo
Jakub M. Tomczak
A. E. Eiben
24
30
0
19 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
16
12
0
19 Oct 2020
Previous
123...222324...444546
Next