ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.6556
  4. Cited By
Estimating sufficient reductions of the predictors in abundant
  high-dimensional regressions

Estimating sufficient reductions of the predictors in abundant high-dimensional regressions

30 May 2012
R. Cook
L. Forzani
Adam J. Rothman
ArXivPDFHTML

Papers citing "Estimating sufficient reductions of the predictors in abundant high-dimensional regressions"

5 / 5 papers shown
Title
Fundamentals of path analysis in the social sciences
Fundamentals of path analysis in the social sciences
R. Cook
L. Forzani
6
3
0
12 Nov 2020
On the optimality of sliced inverse regression in high dimensions
On the optimality of sliced inverse regression in high dimensions
Q. Lin
Xinran Li
Dongming Huang
Jun S. Liu
25
24
0
21 Jan 2017
Sparse Sliced Inverse Regression Via Lasso
Sparse Sliced Inverse Regression Via Lasso
Q. Lin
Zhigen Zhao
Jun S. Liu
54
81
0
21 Nov 2016
On consistency and sparsity for sliced inverse regression in high
  dimensions
On consistency and sparsity for sliced inverse regression in high dimensions
Q. Lin
Zhigen Zhao
Jun S. Liu
19
75
0
14 Jul 2015
Dimension reduction for nonelliptically distributed predictors
Dimension reduction for nonelliptically distributed predictors
Bing Li
Yuexiao Dong
48
114
0
24 Apr 2009
1