ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.4656
  4. Cited By
Conditional mean embeddings as regressors - supplementary

Conditional mean embeddings as regressors - supplementary

21 May 2012
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
A. Gretton
Massimiliano Pontil
ArXivPDFHTML

Papers citing "Conditional mean embeddings as regressors - supplementary"

23 / 23 papers shown
Title
Spectral Representation for Causal Estimation with Hidden Confounders
Spectral Representation for Causal Estimation with Hidden Confounders
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
CML
29
1
0
15 Jul 2024
Kernel Single Proxy Control for Deterministic Confounding
Kernel Single Proxy Control for Deterministic Confounding
Liyuan Xu
A. Gretton
CML
24
2
0
08 Aug 2023
Causal survival embeddings: non-parametric counterfactual inference
  under censoring
Causal survival embeddings: non-parametric counterfactual inference under censoring
Carlos García-Meixide
Marcos Matabuena
CML
36
5
0
20 Jun 2023
Consistent Optimal Transport with Empirical Conditional Measures
Consistent Optimal Transport with Empirical Conditional Measures
Piyushi Manupriya
Rachit Keerti Das
Sayantan Biswas
S. Jagarlapudi
OT
26
3
0
25 May 2023
Supervised learning with probabilistic morphisms and kernel mean
  embeddings
Supervised learning with probabilistic morphisms and kernel mean embeddings
H. Lê
GAN
18
1
0
10 May 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
41
0
0
26 Jan 2023
Doubly Robust Kernel Statistics for Testing Distributional Treatment
  Effects
Doubly Robust Kernel Statistics for Testing Distributional Treatment Effects
Jake Fawkes
Robert Hu
R. Evans
Dino Sejdinovic
OOD
23
3
0
09 Dec 2022
Learning linear operators: Infinite-dimensional regression as a
  well-behaved non-compact inverse problem
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
22
24
0
16 Nov 2022
Spectral Decomposition Representation for Reinforcement Learning
Spectral Decomposition Representation for Reinforcement Learning
Tongzheng Ren
Tianjun Zhang
Lisa Lee
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
OffRL
40
27
0
19 Aug 2022
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
16
60
0
27 May 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric
  Entropy of Smooth Function Classes
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
14
6
0
09 Feb 2022
Data-Driven Chance Constrained Control using Kernel Distribution
  Embeddings
Data-Driven Chance Constrained Control using Kernel Distribution Embeddings
Adam J. Thorpe
T. Lew
Meeko Oishi
Marco Pavone
25
21
0
08 Feb 2022
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Prem M. Talwai
A. Shameli
D. Simchi-Levi
19
10
0
16 May 2021
Exact Distribution-Free Hypothesis Tests for the Regression Function of
  Binary Classification via Conditional Kernel Mean Embeddings
Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings
Ambrus Tamás
Balázs Csanád Csáji
25
4
0
08 Mar 2021
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
28
77
0
10 Feb 2020
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic
  Likelihood-Free Inference
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
Kelvin Hsu
F. Ramos
30
12
0
03 Mar 2019
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
24
130
0
30 May 2018
Flexible and accurate inference and learning for deep generative models
Flexible and accurate inference and learning for deep generative models
Eszter Vértes
M. Sahani
SyDa
BDL
6
44
0
28 May 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
34
13
0
23 Feb 2018
Learning from Conditional Distributions via Dual Embeddings
Learning from Conditional Distributions via Dual Embeddings
Bo Dai
Niao He
Yunpeng Pan
Byron Boots
Le Song
35
21
0
15 Jul 2016
Hilbert Space Embeddings of Predictive State Representations
Hilbert Space Embeddings of Predictive State Representations
Byron Boots
Geoffrey J. Gordon
A. Gretton
44
95
0
26 Sep 2013
Kernel Mean Estimation and Stein's Effect
Kernel Mean Estimation and Stein's Effect
Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
A. Gretton
Bernhard Schölkopf
54
40
0
04 Jun 2013
A Generalized Kernel Approach to Structured Output Learning
A Generalized Kernel Approach to Structured Output Learning
Hachem Kadri
Mohammad Ghavamzadeh
Philippe Preux
78
37
0
10 May 2012
1