ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.4217
  4. Cited By
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis

Thompson Sampling: An Asymptotically Optimal Finite Time Analysis

18 May 2012
E. Kaufmann
N. Korda
Rémi Munos
ArXivPDFHTML

Papers citing "Thompson Sampling: An Asymptotically Optimal Finite Time Analysis"

7 / 7 papers shown
Title
Replicability is Asymptotically Free in Multi-armed Bandits
Replicability is Asymptotically Free in Multi-armed Bandits
Junpei Komiyama
Shinji Ito
Yuichi Yoshida
Souta Koshino
87
1
0
12 Feb 2024
Bandit Social Learning: Exploration under Myopic Behavior
Bandit Social Learning: Exploration under Myopic Behavior
Kiarash Banihashem
Mohammadtaghi Hajiaghayi
Suho Shin
Aleksandrs Slivkins
141
4
0
15 Feb 2023
Safe Linear Thompson Sampling with Side Information
Safe Linear Thompson Sampling with Side Information
Ahmadreza Moradipari
Sanae Amani
M. Alizadeh
Christos Thrampoulidis
81
42
0
06 Nov 2019
Scalable Multiagent Coordination with Distributed Online Open Loop
  Planning
Scalable Multiagent Coordination with Distributed Online Open Loop Planning
Lenz Belzner
Thomas Gabor
21
2
0
24 Feb 2017
Infomax strategies for an optimal balance between exploration and
  exploitation
Infomax strategies for an optimal balance between exploration and exploitation
Gautam Reddy
A. Celani
M. Vergassola
22
17
0
12 Jan 2016
A Finite-Time Analysis of Multi-armed Bandits Problems with
  Kullback-Leibler Divergences
A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences
Odalric-Ambrym Maillard
Rémi Munos
Gilles Stoltz
58
146
0
29 May 2011
The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond
The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond
Aurélien Garivier
Olivier Cappé
92
613
0
12 Feb 2011
1