Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1203.1513
Cited By
v1
v2 (latest)
Invariant Scattering Convolution Networks
5 March 2012
Joan Bruna
S. Mallat
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Invariant Scattering Convolution Networks"
50 / 490 papers shown
Title
Moment kernels: a simple and scalable approach for equivariance to rotations and reflections in deep convolutional networks
Zachary Schlamowitz
Andrew Bennecke
Daniel J. Tward
29
0
0
27 May 2025
The Maximal Overlap Discrete Wavelet Scattering Transform and Its Application in Classification Tasks
Leonardo Fonseca Larrubia
Pedro Alberto Morettin
Chang Chiann
7
0
0
23 May 2025
A Neural Architecture Search Method using Auxiliary Evaluation Metric based on ResNet Architecture
Shang Wang
Huanrong Tang
Jianquan Ouyang
75
0
0
02 May 2025
InfoGain Wavelets: Furthering the Design of Diffusion Wavelets for Graph-Structured Data
David R. Johnson
Smita Krishnaswamy
Michael Perlmutter
DiffM
86
0
0
08 Apr 2025
Random Projections and Natural Sparsity in Time-Series Classification: A Theoretical Analysis
J. Marco-Blanco
Rubén Cuevas
AI4TS
73
0
0
24 Feb 2025
Digital implementations of deep feature extractors are intrinsically informative
Max Getter
127
0
0
20 Feb 2025
Explainable and Class-Revealing Signal Feature Extraction via Scattering Transform and Constrained Zeroth-Order Optimization
N. Saito
David S. Weber
94
0
0
08 Feb 2025
An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models
Yunzhe Hu
Difan Zou
Dong Xu
123
1
0
26 Nov 2024
Simulation-based inference with scattering representations: scattering is all you need
Kiyam Lin
Benjamin Joachimi
Jason D. McEwen
63
1
0
11 Oct 2024
Sparse Covariance Neural Networks
Andrea Cavallo
Zhan Gao
Elvin Isufi
50
1
0
02 Oct 2024
Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
Alessandro Lovo
Amaury Lancelin
Corentin Herbert
Freddy Bouchet
AI4CE
209
0
0
01 Oct 2024
Biomimetic Frontend for Differentiable Audio Processing
Ruolan Leslie Famularo
D. Zotkin
S. Shamma
R. Duraiswami
AI4TS
78
0
0
13 Sep 2024
Space-scale Exploration of the Poor Reliability of Deep Learning Models: the Case of the Remote Sensing of Rooftop Photovoltaic Systems
Gabriel Kasmi
L. Dubus
Yves-Marie Saint Drenan
Philippe Blanc
80
1
0
31 Jul 2024
Invariance of deep image quality metrics to affine transformations
Nuria Alabau-Bosque
Paula Daudén-Oliver
Jorge Vila-Tomás
Valero Laparra
Jesús Malo
48
4
0
25 Jul 2024
Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks
Ayan Igali
Pakizar Shamoi
73
4
0
23 Jul 2024
Learning Color Equivariant Representations
Felix O'Mahony
Yulong Yang
Christine Allen-Blanchette
73
0
0
13 Jun 2024
Wearable Device-Based Real-Time Monitoring of Physiological Signals: Evaluating Cognitive Load Across Different Tasks
Ling He
Yanxin Chen
Wenqi Wang
Shuting He
Xiaoqiang Hu
34
0
0
11 Jun 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
73
13
0
29 Apr 2024
Denoising: from classical methods to deep CNNs
J. Campagne
DiffM
59
0
0
25 Apr 2024
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Umberto M. Tomasini
Matthieu Wyart
BDL
94
7
0
16 Apr 2024
Multi-scale Unified Network for Image Classification
Wenzhuo Liu
Fei Zhu
Cheng-Lin Liu
CVBM
96
0
0
27 Mar 2024
Histogram Layers for Neural Engineered Features
Joshua Peeples
Salim Al Kharsa
Luke Saleh
Alina Zare
63
2
0
25 Mar 2024
Mean-Field Microcanonical Gradient Descent
Marcus Häggbom
Morten Karlsmark
Joakim andén
59
0
0
13 Mar 2024
A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
109
4
0
25 Feb 2024
Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales
Shuren Qi
Yushu Zhang
Chao Wang
Zhihua Xia
Xiaochun Cao
Jian Weng
63
1
0
23 Feb 2024
NeRF Solves Undersampled MRI Reconstruction
Tae Jun Jang
Chang Min Hyun
54
3
0
20 Feb 2024
WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database
Alessandro Licciardi
Davide Carbone Politecnico di Torino
63
4
0
20 Feb 2024
Future Directions in the Theory of Graph Machine Learning
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
123
7
0
03 Feb 2024
Deep Continuous Networks
Nergis Tomen
S. Pintea
Jan van Gemert
149
14
0
02 Feb 2024
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Achref Jaziri
Sina Ditzel
Iuliia Pliushch
Visvanathan Ramesh
SSL
68
1
0
22 Nov 2023
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
64
2
0
17 Nov 2023
Improving Hand Recognition in Uncontrolled and Uncooperative Environments using Multiple Spatial Transformers and Loss Functions
Wojciech Michal Matkowski
Xiaojie Li
A. Kong
53
2
0
09 Nov 2023
H-NeXt: The next step towards roto-translation invariant networks
Tomáš Karella
F. Šroubek
J. Flusser
Jan Blazek
Vasek Kosik
60
1
0
02 Nov 2023
LGL-BCI: A Motor-Imagery-Based Brain-Computer Interface with Geometric Learning
Jianchao Lu
Yuzhe Tian
Yang Zhang
Jiaqi Ge
Quan Z. Sheng
50
1
0
12 Oct 2023
Emergence of Segmentation with Minimalistic White-Box Transformers
Yaodong Yu
Tianzhe Chu
Shengbang Tong
Ziyang Wu
Druv Pai
Sam Buchanan
Yi Ma
ViT
44
22
0
30 Aug 2023
ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations
Sreyan Ghosh
Chandra Kiran Reddy Evuru
Sonal Kumar
Utkarsh Tyagi
Sakshi Singh
Sanjoy Chowdhury
Dinesh Manocha
OOD
52
1
0
19 Aug 2023
Riesz feature representation: scale equivariant scattering network for classification tasks
Tin Barisin
Jesús Angulo
K. Schladitz
C. Redenbach
49
2
0
17 Jul 2023
Manifold Filter-Combine Networks
Joyce A. Chew
E. Brouwer
Smita Krishnaswamy
Deanna Needell
Michael Perlmutter
Michael Perlmutter
GNN
82
0
0
08 Jul 2023
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
Matthieu Wyart
BDL
114
26
0
05 Jul 2023
Scattering Spectra Models for Physics
S. Cheng
Rudy Morel
Erwan Allys
Brice Ménard
S. Mallat
66
9
0
29 Jun 2023
Statistical Component Separation for Targeted Signal Recovery in Noisy Mixtures
Bruno Régaldo-Saint Blancard
Michael Eickenberg
40
2
0
26 Jun 2023
Scale-Rotation-Equivariant Lie Group Convolution Neural Networks (Lie Group-CNNs)
Weizheng Qiao
Yang Xu
Hui Li
61
1
0
12 Jun 2023
White-Box Transformers via Sparse Rate Reduction
Yaodong Yu
Sam Buchanan
Druv Pai
Tianzhe Chu
Ziyang Wu
Shengbang Tong
B. Haeffele
Yi Ma
ViT
102
87
0
01 Jun 2023
Pruning Distorted Images in MNIST Handwritten Digits
Amarnath R
Vinay Kumar
40
1
0
26 May 2023
Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders
Ali Siahkoohi
Rudy Morel
Randall Balestriero
Erwan Allys
G. Sainton
Taichi Kawamura
Maarten V. de Hoop
141
2
0
25 May 2023
The Hessian perspective into the Nature of Convolutional Neural Networks
Sidak Pal Singh
Thomas Hofmann
Bernhard Schölkopf
96
11
0
16 May 2023
Wavelet-Based Density Estimation for Persistent Homology
Konstantin Häberle
B. Bravi
Anthea Monod
41
2
0
15 May 2023
Learning Structure Aware Deep Spectral Embedding
Hira Yaseen
Arif Mahmood
50
4
0
14 May 2023
Riesz networks: scale invariant neural networks in a single forward pass
Tin Barisin
K. Schladitz
C. Redenbach
71
12
0
08 May 2023
ScatterFormer: Locally-Invariant Scattering Transformer for Patient-Independent Multispectral Detection of Epileptiform Discharges
Rui-Hua Zheng
Jun Yu Li
Yi Wang
Tian Luo
Yuguo Yu
MedIm
67
5
0
26 Apr 2023
1
2
3
4
...
8
9
10
Next