ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.0967
  4. Cited By
Minimax bounds for sparse PCA with noisy high-dimensional data

Minimax bounds for sparse PCA with noisy high-dimensional data

5 March 2012
Aharon Birnbaum
Iain M. Johnstone
B. Nadler
D. Paul
ArXivPDFHTML

Papers citing "Minimax bounds for sparse PCA with noisy high-dimensional data"

29 / 29 papers shown
Title
Do algorithms and barriers for sparse principal component analysis
  extend to other structured settings?
Do algorithms and barriers for sparse principal component analysis extend to other structured settings?
Guanyi Wang
Mengqi Lou
A. Pananjady
CML
38
1
0
25 Jul 2023
On the Multiway Principal Component Analysis
On the Multiway Principal Component Analysis
Jialin Ouyang
Ming Yuan
19
2
0
14 Feb 2023
Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things
  Applications
Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things Applications
Shao-Di Wang
Hui-Ming Wang
Peng Liu
11
1
0
02 Dec 2022
Optimal convex lifted sparse phase retrieval and PCA with an atomic
  matrix norm regularizer
Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer
Andrew D. McRae
Justin Romberg
Mark A. Davenport
35
8
0
08 Nov 2021
Classification of high-dimensional data with spiked covariance matrix
  structure
Classification of high-dimensional data with spiked covariance matrix structure
Yin-Jen Chen
M. Tang
62
0
0
05 Oct 2021
Sparse principal component analysis for high-dimensional stationary time
  series
Sparse principal component analysis for high-dimensional stationary time series
Kou Fujimori
Yuichi Goto
Yong-Jin Liu
M. Taniguchi
25
2
0
01 Sep 2021
Tensor Principal Component Analysis in High Dimensional CP Models
Tensor Principal Component Analysis in High Dimensional CP Models
Yuefeng Han
Cun-Hui Zhang
31
10
0
10 Aug 2021
Power Iteration for Tensor PCA
Power Iteration for Tensor PCA
Jiaoyang Huang
Daniel Zhengyu Huang
Qing Yang
Guang Cheng
29
18
0
26 Dec 2020
Generalized Four Moment Theorem with an application to the CLT for the
  spiked eigenvalues of high-dimensional general Fisher-matrices
Generalized Four Moment Theorem with an application to the CLT for the spiked eigenvalues of high-dimensional general Fisher-matrices
Dandan Jiang
Zhiqiang Hou
Z. Bai
22
1
0
11 Apr 2019
Robust Sparse Reduced Rank Regression in High Dimensions
Robust Sparse Reduced Rank Regression in High Dimensions
Kean Ming Tan
Qiang Sun
Daniela Witten
27
3
0
18 Oct 2018
Asymptotically Efficient Estimation of Smooth Functionals of Covariance
  Operators
Asymptotically Efficient Estimation of Smooth Functionals of Covariance Operators
V. Koltchinskii
24
30
0
25 Oct 2017
Tensor SVD: Statistical and Computational Limits
Tensor SVD: Statistical and Computational Limits
Anru R. Zhang
Dong Xia
21
166
0
08 Mar 2017
Robust Sparse Estimation Tasks in High Dimensions
Robust Sparse Estimation Tasks in High Dimensions
Jerry Li
50
27
0
20 Feb 2017
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex
  Matrix Factorization
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization
Xingguo Li
Junwei Lu
R. Arora
Jarvis Haupt
Han Liu
Zhaoran Wang
T. Zhao
43
52
0
29 Dec 2016
Optimality and Sub-optimality of PCA for Spiked Random Matrices and
  Synchronization
Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization
Amelia Perry
Alexander S. Wein
Afonso S. Bandeira
Ankur Moitra
24
59
0
19 Sep 2016
Efficient Estimation of Partially Linear Models for Spatial Data over
  Complex Domain
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
9
20
0
27 May 2016
Sparse Generalized Eigenvalue Problem: Optimal Statistical Rates via
  Truncated Rayleigh Flow
Sparse Generalized Eigenvalue Problem: Optimal Statistical Rates via Truncated Rayleigh Flow
Kean Ming Tan
Zhaoran Wang
Han Liu
Tong Zhang
31
57
0
29 Apr 2016
Robust Shift-and-Invert Preconditioning: Faster and More Sample
  Efficient Algorithms for Eigenvector Computation
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
Chi Jin
Sham Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
17
42
0
29 Oct 2015
The Spectral Norm of Random Inner-Product Kernel Matrices
The Spectral Norm of Random Inner-Product Kernel Matrices
Z. Fan
Andrea Montanari
24
47
0
19 Jul 2015
Robust Covariance and Scatter Matrix Estimation under Huber's
  Contamination Model
Robust Covariance and Scatter Matrix Estimation under Huber's Contamination Model
Mengjie Chen
Chao Gao
Zhao Ren
25
164
0
01 Jun 2015
Asymptotics of Empirical Eigen-structure for Ultra-high Dimensional
  Spiked Covariance Model
Asymptotics of Empirical Eigen-structure for Ultra-high Dimensional Spiked Covariance Model
Jianqing Fan
Weichen Wang
23
42
0
16 Feb 2015
Computational and Statistical Boundaries for Submatrix Localization in a
  Large Noisy Matrix
Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
32
61
0
06 Feb 2015
Statistical and computational trade-offs in estimation of sparse
  principal components
Statistical and computational trade-offs in estimation of sparse principal components
Tengyao Wang
Quentin Berthet
R. Samworth
58
136
0
22 Aug 2014
Asymptotics and Concentration Bounds for Bilinear Forms of Spectral
  Projectors of Sample Covariance
Asymptotics and Concentration Bounds for Bilinear Forms of Spectral Projectors of Sample Covariance
V. Koltchinskii
Karim Lounici
55
90
0
20 Aug 2014
Influential Feature PCA for high dimensional clustering
Influential Feature PCA for high dimensional clustering
Jiashun Jin
Wanjie Wang
40
79
0
20 Jul 2014
Rate-optimal posterior contraction for sparse PCA
Rate-optimal posterior contraction for sparse PCA
Chao Gao
Harrison H. Zhou
51
35
0
30 Nov 2013
ROP: Matrix recovery via rank-one projections
ROP: Matrix recovery via rank-one projections
T. Tony Cai
Anru R. Zhang
36
149
0
22 Oct 2013
OptShrink: An algorithm for improved low-rank signal matrix denoising by
  optimal, data-driven singular value shrinkage
OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage
R. Nadakuditi
39
162
0
25 Jun 2013
Optimal detection of sparse principal components in high dimension
Optimal detection of sparse principal components in high dimension
Quentin Berthet
Philippe Rigollet
62
284
0
23 Feb 2012
1