ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3763
58
22

An Efficient Algorithm for Computing Interventional Distributions in Latent Variable Causal Models

14 February 2012
I. Shpitser
Thomas S. Richardson
J. M. Robins
    CML
    TPM
ArXivPDFHTML
Abstract

Probabilistic inference in graphical models is the task of computing marginal and conditional densities of interest from a factorized representation of a joint probability distribution. Inference algorithms such as variable elimination and belief propagation take advantage of constraints embedded in this factorization to compute such densities efficiently. In this paper, we propose an algorithm which computes interventional distributions in latent variable causal models represented by acyclic directed mixed graphs(ADMGs). To compute these distributions efficiently, we take advantage of a recursive factorization which generalizes the usual Markov factorization for DAGs and the more recent factorization for ADMGs. Our algorithm can be viewed as a generalization of variable elimination to the mixed graph case. We show our algorithm is exponential in the mixed graph generalization of treewidth.

View on arXiv
Comments on this paper