ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.0786
  4. Cited By
Minimax Rates of Estimation for Sparse PCA in High Dimensions

Minimax Rates of Estimation for Sparse PCA in High Dimensions

3 February 2012
Vincent Q. Vu
Jing Lei
ArXivPDFHTML

Papers citing "Minimax Rates of Estimation for Sparse PCA in High Dimensions"

18 / 18 papers shown
Title
Do algorithms and barriers for sparse principal component analysis
  extend to other structured settings?
Do algorithms and barriers for sparse principal component analysis extend to other structured settings?
Guanyi Wang
Mengqi Lou
A. Pananjady
CML
38
1
0
25 Jul 2023
Sparse PCA on fixed-rank matrices
Sparse PCA on fixed-rank matrices
Alberto Del Pia
19
6
0
07 Jan 2022
Optimal convex lifted sparse phase retrieval and PCA with an atomic
  matrix norm regularizer
Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer
Andrew D. McRae
Justin Romberg
Mark A. Davenport
35
8
0
08 Nov 2021
Classification of high-dimensional data with spiked covariance matrix
  structure
Classification of high-dimensional data with spiked covariance matrix structure
Yin-Jen Chen
M. Tang
62
0
0
05 Oct 2021
Spectral Methods for Data Science: A Statistical Perspective
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
Subexponential-Time Algorithms for Sparse PCA
Subexponential-Time Algorithms for Sparse PCA
Yunzi Ding
Dmitriy Kunisky
Alexander S. Wein
Afonso S. Bandeira
30
57
0
26 Jul 2019
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Optimality and Sub-optimality of PCA for Spiked Random Matrices and
  Synchronization
Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization
Amelia Perry
Alexander S. Wein
Afonso S. Bandeira
Ankur Moitra
24
59
0
19 Sep 2016
The Spectral Norm of Random Inner-Product Kernel Matrices
The Spectral Norm of Random Inner-Product Kernel Matrices
Z. Fan
Andrea Montanari
24
47
0
19 Jul 2015
Asymptotics of Empirical Eigen-structure for Ultra-high Dimensional
  Spiked Covariance Model
Asymptotics of Empirical Eigen-structure for Ultra-high Dimensional Spiked Covariance Model
Jianqing Fan
Weichen Wang
23
42
0
16 Feb 2015
Computational and Statistical Boundaries for Submatrix Localization in a
  Large Noisy Matrix
Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
32
61
0
06 Feb 2015
The Fast Convergence of Incremental PCA
The Fast Convergence of Incremental PCA
Akshay Balsubramani
S. Dasgupta
Y. Freund
43
142
0
15 Jan 2015
Asymptotics and Concentration Bounds for Bilinear Forms of Spectral
  Projectors of Sample Covariance
Asymptotics and Concentration Bounds for Bilinear Forms of Spectral Projectors of Sample Covariance
V. Koltchinskii
Karim Lounici
55
90
0
20 Aug 2014
High Dimensional Semiparametric Scale-Invariant Principal Component
  Analysis
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis
Fang Han
Han Liu
45
16
0
18 Feb 2014
A Direct Estimation of High Dimensional Stationary Vector
  Autoregressions
A Direct Estimation of High Dimensional Stationary Vector Autoregressions
Fang Han
Huanran Lu
Han Liu
66
120
0
01 Jul 2013
Sparse Principal Component Analysis with missing observations
Sparse Principal Component Analysis with missing observations
Karim Lounici
63
43
0
31 May 2012
Minimax bounds for sparse PCA with noisy high-dimensional data
Minimax bounds for sparse PCA with noisy high-dimensional data
Aharon Birnbaum
Iain M. Johnstone
B. Nadler
D. Paul
53
181
0
05 Mar 2012
Optimal detection of sparse principal components in high dimension
Optimal detection of sparse principal components in high dimension
Quentin Berthet
Philippe Rigollet
62
284
0
23 Feb 2012
1