ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.0709
  4. Cited By
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster

MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster

3 February 2012
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
ArXivPDFHTML

Papers citing "MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster"

4 / 4 papers shown
Title
Score-based Diffusion Models in Function Space
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
Ricardo Baptista
Christopher Beckham
Kamyar Azizzadenesheli
...
Karsten Kreis
Jan Kautz
Christopher Pal
Arash Vahdat
Anima Anandkumar
DiffM
118
43
0
14 Feb 2023
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and
  Infinite Dimensions
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and Infinite Dimensions
N. Glatt-Holtz
Cecilia F. Mondaini
134
10
0
17 Mar 2020
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
J. Harlim
D. Sanz-Alonso
Ruiyi Yang
38
19
0
23 Oct 2019
Besov priors for Bayesian inverse problems
Besov priors for Bayesian inverse problems
Masoumeh Dashti
Stephen Harris
Andrew M. Stuart
72
119
0
04 May 2011
1