ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.4394
  4. Cited By
Additive Gaussian Processes

Additive Gaussian Processes

19 December 2011
David Duvenaud
H. Nickisch
C. Rasmussen
    GP
ArXivPDFHTML

Papers citing "Additive Gaussian Processes"

30 / 30 papers shown
Title
Challenges in interpretability of additive models
Challenges in interpretability of additive models
Xinyu Zhang
Julien Martinelli
S. T. John
AAML
AI4CE
32
1
0
14 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
51
1
0
01 Apr 2025
Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
Sergei Manzhos
Johann Luder
Manabu Ihara
Manabu Ihara
39
0
0
08 Feb 2025
Dynamic Online Ensembles of Basis Expansions
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
43
3
0
02 May 2024
Explainable Learning with Gaussian Processes
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
P. Djuric
39
1
0
11 Mar 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
32
17
0
03 Feb 2024
A Bayesian Take on Gaussian Process Networks
A Bayesian Take on Gaussian Process Networks
Enrico Giudice
Jack Kuipers
G. Moffa
GP
29
3
0
20 Jun 2023
Scalable Bayesian optimization with high-dimensional outputs using
  randomized prior networks
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
19
1
0
14 Feb 2023
Orders-of-coupling representation with a single neural network with
  optimal neuron activation functions and without nonlinear parameter
  optimization
Orders-of-coupling representation with a single neural network with optimal neuron activation functions and without nonlinear parameter optimization
Sergei Manzhos
Manabu Ihara
18
8
0
11 Feb 2023
Hierarchical shrinkage Gaussian processes: applications to computer code
  emulation and dynamical system recovery
Hierarchical shrinkage Gaussian processes: applications to computer code emulation and dynamical system recovery
T. Tang
Simon Mak
David B. Dunson
22
4
0
01 Feb 2023
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
Forward variable selection enables fast and accurate dynamic system
  identification with Karhunen-Loève decomposed Gaussian processes
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
33
0
0
26 May 2022
High-dimensional additive Gaussian processes under monotonicity
  constraints
High-dimensional additive Gaussian processes under monotonicity constraints
A. F. López-Lopera
F. Bachoc
O. Roustant
31
9
0
17 May 2022
High Dimensional Bayesian Optimization with Kernel Principal Component
  Analysis
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis
Kirill Antonov
E. Raponi
Hao Wang
Carola Doerr
25
10
0
28 Apr 2022
Online structural kernel selection for mobile health
Online structural kernel selection for mobile health
Eura Shin
Pedja Klasnja
S. Murphy
Finale Doshi-Velez
15
1
0
21 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
21
8
0
18 Jun 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
33
30
0
18 Mar 2021
Additive Tree-Structured Covariance Function for Conditional Parameter
  Spaces in Bayesian Optimization
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
21
7
0
21 Jun 2020
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
21
27
0
30 Dec 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
17
35
0
14 May 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
W. Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric P. Xing
29
174
0
15 Mar 2019
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
13
69
0
12 Jun 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
T. Hoang
Q. Hoang
Ruofei Ouyang
K. H. Low
23
53
0
19 Nov 2017
Gaussian Processes for Survival Analysis
Gaussian Processes for Survival Analysis
T. Fernandez
Nicolás Rivera
Yee Whye Teh
GP
22
75
0
02 Nov 2016
The Multivariate Generalised von Mises distribution: Inference and
  applications
The Multivariate Generalised von Mises distribution: Inference and applications
Alexandre Khae Wu Navarro
J. Frellsen
Richard Turner
17
24
0
16 Feb 2016
Additive Approximations in High Dimensional Nonparametric Regression via
  the SALSA
Additive Approximations in High Dimensional Nonparametric Regression via the SALSA
Kirthevasan Kandasamy
Yaoliang Yu
20
44
0
31 Jan 2016
Generalized Spectral Kernels
Generalized Spectral Kernels
Yves-Laurent Kom Samo
Stephen J. Roberts
24
54
0
07 Jun 2015
Polynomial-Chaos-based Kriging
Polynomial-Chaos-based Kriging
R. Schöbi
Bruno Sudret
J. Wiart
38
269
0
13 Feb 2015
High-Dimensional Non-Linear Variable Selection through Hierarchical
  Kernel Learning
High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning
Francis R. Bach
BDL
126
74
0
04 Sep 2009
1