Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1110.2529
Cited By
v1
v2 (latest)
The Generalization Ability of Online Algorithms for Dependent Data
11 October 2011
Alekh Agarwal
John C. Duchi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Generalization Ability of Online Algorithms for Dependent Data"
26 / 26 papers shown
Title
Statistical Inference with Stochastic Gradient Methods under
φ
φ
φ
-mixing Data
Ruiqi Liu
Xinyu Chen
Zuofeng Shang
FedML
82
6
0
24 Feb 2023
Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
66
9
0
22 Jun 2022
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
113
30
0
16 Jun 2022
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
99
3
0
25 May 2022
Benign Overfitting in Time Series Linear Models with Over-Parameterization
Shogo H. Nakakita
Masaaki Imaizumi
AI4TS
285
5
0
18 Apr 2022
Single Trajectory Nonparametric Learning of Nonlinear Dynamics
Ingvar M. Ziemann
H. Sandberg
Nikolai Matni
71
25
0
16 Feb 2022
Risk Adversarial Learning System for Connected and Autonomous Vehicle Charging
M. S. Munir
Ki Tae Kim
K. Thar
Dusit Niyato
Choong Seon Hong
23
5
0
02 Aug 2021
Exponential Weights Algorithms for Selective Learning
Mingda Qiao
Gregory Valiant
37
2
0
29 Jun 2021
Three rates of convergence or separation via U-statistics in a dependent framework
Quentin Duchemin
Yohann De Castro
C. Lacour
26
0
0
24 Jun 2021
Stochastic Online Convex Optimization. Application to probabilistic time series forecasting
Olivier Wintenberger
AI4TS
89
8
0
01 Feb 2021
Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable Edge Computing Systems
M. S. Munir
N. H. Tran
Walid Saad
Choong Seon Hong
140
20
0
20 Feb 2020
Learning from weakly dependent data under Dobrushin's condition
Y. Dagan
C. Daskalakis
Nishanth Dikkala
S. Jayanti
89
24
0
21 Jun 2019
Regression from Dependent Observations
C. Daskalakis
Nishanth Dikkala
Ioannis Panageas
87
30
0
08 May 2019
Sample Splitting and Weak Assumption Inference For Time Series
Robert Lunde
48
2
0
20 Feb 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
97
91
0
02 Feb 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
171
223
0
16 Jan 2019
Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator
Stephen Tu
Benjamin Recht
OffRL
78
131
0
22 Dec 2017
Empirical risk minimization and complexity of dynamical models
K. Mcgoff
A. Nobel
46
11
0
18 Nov 2016
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
161
72
0
23 Oct 2016
Statistical Learning under Nonstationary Mixing Processes
Steve Hanneke
Liu Yang
43
11
0
26 Dec 2015
Conditional Risk Minimization for Stochastic Processes
Alexander Zimin
Christoph H. Lampert
100
7
0
09 Oct 2015
Optimal learning with Bernstein Online Aggregation
Olivier Wintenberger
FedML
160
79
0
04 Apr 2014
Online Learning with Pairwise Loss Functions
Bernie Wang
Roni Khardon
Dmitry Pechyony
R. Jones
128
10
0
22 Jan 2013
Nonparametric risk bounds for time-series forecasting
D. McDonald
C. Shalizi
M. Schervish
AI4TS
141
28
0
03 Dec 2012
The Interplay Between Stability and Regret in Online Learning
Ankan Saha
Prateek Jain
Ambuj Tewari
85
15
0
26 Nov 2012
Prediction of time series by statistical learning: general losses and fast rates
Pierre Alquier
Xiaoyin Li
Olivier Wintenberger
AI4TS
172
47
0
08 Nov 2012
1