Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1109.5647
Cited By
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
26 September 2011
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization"
14 / 14 papers shown
Title
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
Wei Zhang
Arif Hassan Zidan
Afrar Jahin
Wei Zhang
Tianming Liu
ODL
45
0
0
16 May 2025
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
77
8
0
28 Jan 2025
Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization
Benjamin Grimmer
Danlin Li
63
6
0
31 Dec 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
51
0
0
11 Nov 2024
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
81
2
0
17 Oct 2024
Collaborative and Efficient Personalization with Mixtures of Adaptors
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
66
3
0
04 Oct 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
64
5
0
06 Jun 2024
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
63
5
0
26 May 2024
Linear Combination of Saved Checkpoints Makes Consistency and Diffusion Models Better
En-hao Liu
Junyi Zhu
Zinan Lin
Xuefei Ning
Shuaiqi Wang
...
Sergey Yekhanin
Guohao Dai
Huazhong Yang
Yu Wang
Yu Wang
MoMe
92
4
0
02 Apr 2024
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality
Ziyang Wei
Wanrong Zhu
Wei Biao Wu
50
5
0
13 Jul 2023
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization
Florian E. Dorner
Nikola Konstantinov
Georgi Pashaliev
Martin Vechev
FedML
54
6
0
25 May 2023
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
65
37
0
24 Sep 2021
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
67
75
0
18 Jun 2020
Stochastic Optimization for Performative Prediction
Celestine Mendler-Dünner
Juan C. Perdomo
Tijana Zrnic
Moritz Hardt
32
114
0
12 Jun 2020
1