Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1109.2618
Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"
6 / 6 papers shown
Title
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
49
0
0
10 Jan 2025
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
Vivin Vinod
Peter Zaspel
62
0
0
15 Oct 2024
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
Michael Kilgour
Mark Tuckerman
Jutta Rogal
50
0
0
22 May 2024
A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead
Kamila Zaman
Alberto Marchisio
Muhammad Abdullah Hanif
Mohamed Bennai
53
26
0
16 Oct 2023
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
28
90
0
27 Mar 2020
Deep Learning for Computational Chemistry
Garrett B. Goh
Nathan Oken Hodas
Abhinav Vishnu
AI4CE
45
674
0
17 Jan 2017
1