Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1109.2415
Cited By
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
12 September 2011
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization"
50 / 73 papers shown
Title
Sum-of-norms regularized Nonnegative Matrix Factorization
Andersen Ang
Waqas Bin Hamed
H. Sterck
23
0
0
30 Jun 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
85
2
0
29 Apr 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
66
1
0
03 Apr 2024
An inexact Bregman proximal point method and its acceleration version for unbalanced optimal transport
Xiang Chen
Faqiang Wang
Jun Liu
Lipeng Cui
OT
19
0
0
26 Feb 2024
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms
Minghao Yang
Xiyuan Wei
Tianbao Yang
Yiming Ying
50
1
0
07 Jul 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Nicolas Le Roux
60
5
0
06 Feb 2023
On the Convergence of the Gradient Descent Method with Stochastic Fixed-point Rounding Errors under the Polyak-Lojasiewicz Inequality
Lu Xia
M. Hochstenbach
Stefano Massei
27
2
0
23 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
41
2
0
09 Jan 2023
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
Parvin Nazari
Ahmad Mousavi
Davoud Ataee Tarzanagh
George Michailidis
41
4
0
08 Nov 2022
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang
Yunwen Lei
Yiming Ying
Ding-Xuan Zhou
24
18
0
16 Sep 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
Shirin Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
28
6
0
26 Jul 2022
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
40
3
0
25 May 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
37
11
0
29 Apr 2022
Sharper Bounds for Proximal Gradient Algorithms with Errors
Anis Hamadouche
Yun-Shun Wu
Andrew M. Wallace
João F. C. Mota
13
7
0
04 Mar 2022
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
Aaron Mishkin
Arda Sahiner
Mert Pilanci
OffRL
77
30
0
02 Feb 2022
Federated Optimization of Smooth Loss Functions
Ali Jadbabaie
A. Makur
Devavrat Shah
FedML
32
7
0
06 Jan 2022
Distributed stochastic proximal algorithm with random reshuffling for non-smooth finite-sum optimization
Xia Jiang
Xianlin Zeng
Jian Sun
Jie Chen
Lihua Xie
18
6
0
06 Nov 2021
Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Streaming Data
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
25
7
0
15 Sep 2021
From inexact optimization to learning via gradient concentration
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
31
5
0
09 Jun 2021
Stronger NAS with Weaker Predictors
Junru Wu
Xiyang Dai
Dongdong Chen
Yinpeng Chen
Mengchen Liu
Ye Yu
Zhangyang Wang
Zicheng Liu
Mei Chen
Lu Yuan
OOD
38
41
0
21 Feb 2021
Constrained and Composite Optimization via Adaptive Sampling Methods
Yuchen Xie
Raghu Bollapragada
R. Byrd
J. Nocedal
27
14
0
31 Dec 2020
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
34
1
0
07 Dec 2020
Factorization Machines with Regularization for Sparse Feature Interactions
Kyohei Atarashi
S. Oyama
M. Kurihara
19
5
0
19 Oct 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
62
187
0
05 Oct 2020
Hybrid Differentially Private Federated Learning on Vertically Partitioned Data
Chang Wang
Jian Liang
Mingkai Huang
Bing Bai
Kun Bai
Hao Li
FedML
23
39
0
06 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
25
110
0
10 Aug 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
6
84
0
31 Jul 2020
Revealing hidden dynamics from time-series data by ODENet
Pipi Hu
Wuyue Yang
Yi Zhu
L. Hong
AI4TS
24
35
0
11 May 2020
Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive Sampling
HanQin Cai
Daniel McKenzie
W. Yin
Zhenliang Zhang
63
49
0
29 Mar 2020
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I
Sandeep Kumar
K. Rajawat
Daniel P. Palomar
29
4
0
21 Jul 2019
Reducing the variance in online optimization by transporting past gradients
Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
26
28
0
08 Jun 2019
Neumann Networks for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
19
24
0
13 Jan 2019
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric Xing
26
41
0
17 Oct 2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
On the Convergence of Learning-based Iterative Methods for Nonconvex Inverse Problems
Risheng Liu
Shichao Cheng
Yi He
Xin-Yue Fan
Zhouchen Lin
Zhongxuan Luo
29
68
0
16 Aug 2018
Approximate Temporal Difference Learning is a Gradient Descent for Reversible Policies
Yann Ollivier
9
18
0
02 May 2018
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization
Ching-pei Lee
Cong Han Lim
Stephen J. Wright
26
29
0
04 Mar 2018
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
24
39
0
03 Nov 2017
Stochastic Nonconvex Optimization with Large Minibatches
Weiran Wang
Nathan Srebro
40
26
0
25 Sep 2017
Don't relax: early stopping for convex regularization
Simon Matet
Lorenzo Rosasco
S. Villa
Bang Long Vu
30
19
0
18 Jul 2017
Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization
Qunwei Li
Yi Zhou
Yingbin Liang
P. Varshney
21
94
0
14 May 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
27
153
0
17 Apr 2017
Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry
Guillaume Garrigos
Lorenzo Rosasco
S. Villa
11
41
0
28 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
16
54
0
21 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
139
1,205
0
16 Aug 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
117
3,178
0
15 Jun 2016
Highly-Smooth Zero-th Order Online Optimization Vianney Perchet
Francis R. Bach
Vianney Perchet
20
83
0
26 May 2016
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
28
19
0
23 May 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
45
442
0
07 Feb 2016
1
2
Next