ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.4431
  4. Cited By
Gaussian Process Regression with a Student-t Likelihood

Gaussian Process Regression with a Student-t Likelihood

22 June 2011
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
    GP
ArXivPDFHTML

Papers citing "Gaussian Process Regression with a Student-t Likelihood"

19 / 19 papers shown
Title
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
26
10
0
01 Nov 2023
Towards Improved Learning in Gaussian Processes: The Best of Two Worlds
Towards Improved Learning in Gaussian Processes: The Best of Two Worlds
Rui Li
S. T. John
Arno Solin
BDL
GP
22
0
0
11 Nov 2022
A Look at Improving Robustness in Visual-inertial SLAM by Moment
  Matching
A Look at Improving Robustness in Visual-inertial SLAM by Moment Matching
Arno Solin
Ruixiao Li
Andrea Pilzer
13
1
0
27 May 2022
A piece-wise constant approximation for non-conjugate Gaussian Process
  models
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
14
0
0
22 Apr 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
30
7
0
03 Feb 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Fast Scalable Image Restoration using Total Variation Priors and
  Expectation Propagation
Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation
D. Yao
S. Mclaughlin
Y. Altmann
13
6
0
04 Oct 2021
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
23
34
0
03 Nov 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian
  Process Models
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
26
4
0
26 Feb 2020
Robust Gaussian Process Regression with a Bias Model
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
David J. Borth
Nicholas S. Wilson
Chad N. Hunter
F. Friedersdorf
23
27
0
14 Jan 2020
Gaussian process classification using posterior linearisation
Gaussian process classification using posterior linearisation
Á. F. García-Fernández
Filip Tronarp
Simo Särkkä
22
11
0
13 Sep 2018
Expectation Propagation for t-Exponential Family Using Q-Algebra
Expectation Propagation for t-Exponential Family Using Q-Algebra
Futoshi Futami
Issei Sato
Masashi Sugiyama
15
6
0
25 May 2017
Chained Gaussian Processes
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
16
59
0
18 Apr 2016
Log-concavity and strong log-concavity: a review
Log-concavity and strong log-concavity: a review
Adrien Saumard
J. Wellner
49
274
0
23 Apr 2014
Approximate Inference for Nonstationary Heteroscedastic Gaussian process
  Regression
Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression
Ville Tolvanen
Pasi Jylänki
Aki Vehtari
44
60
0
22 Apr 2014
On Approximate Inference for Generalized Gaussian Process Models
On Approximate Inference for Generalized Gaussian Process Models
Lifeng Shang
Antoni B. Chan
38
11
0
25 Nov 2013
Expectation Propagation for Neural Networks with Sparsity-promoting
  Priors
Expectation Propagation for Neural Networks with Sparsity-promoting Priors
Pasi Jylänki
A. Nummenmaa
Aki Vehtari
41
36
0
27 Mar 2013
Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox
Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox
J. Vanhatalo
J. Riihimaki
Jouni Hartikainen
Pasi Jylänki
Ville Tolvanen
Aki Vehtari
GP
33
46
0
25 Jun 2012
1