ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1104.1436
  4. Cited By
Efficient First Order Methods for Linear Composite Regularizers

Efficient First Order Methods for Linear Composite Regularizers

7 April 2011
Andreas Argyriou
C. Micchelli
Massimiliano Pontil
Lixin Shen
Yuesheng Xu
ArXivPDFHTML

Papers citing "Efficient First Order Methods for Linear Composite Regularizers"

3 / 3 papers shown
Title
Learning physically consistent mathematical models from data using group
  sparsity
Learning physically consistent mathematical models from data using group sparsity
S. Maddu
B. Cheeseman
Christian L. Müller
I. Sbalzarini
17
5
0
11 Dec 2020
New Perspectives on k-Support and Cluster Norms
New Perspectives on k-Support and Cluster Norms
Andrew M. McDonald
Massimiliano Pontil
Dimitris Stamos
61
58
0
06 Mar 2014
Node-Based Learning of Multiple Gaussian Graphical Models
Node-Based Learning of Multiple Gaussian Graphical Models
Karthika Mohan
Palma London
Maryam Fazel
Daniela Witten
Su-In Lee
36
206
0
21 Mar 2013
1