ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1104.0861
  4. Cited By
Generalized double Pareto shrinkage

Generalized double Pareto shrinkage

5 April 2011
Artin Armagan
David B. Dunson
Jaeyong Lee
ArXivPDFHTML

Papers citing "Generalized double Pareto shrinkage"

23 / 23 papers shown
Title
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
54
1
0
25 May 2023
Maximum a Posteriori Estimation in Graphical Models Using Local Linear
  Approximation
Maximum a Posteriori Estimation in Graphical Models Using Local Linear Approximation
K. Sagar
J. Datta
Sayantan Banerjee
A. Bhadra
24
2
0
13 Mar 2023
Hierarchical shrinkage Gaussian processes: applications to computer code
  emulation and dynamical system recovery
Hierarchical shrinkage Gaussian processes: applications to computer code emulation and dynamical system recovery
T. Tang
Simon Mak
David B. Dunson
16
4
0
01 Feb 2023
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview,
  Implementation, and Applications
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
17
18
0
28 Jan 2022
Sparse Linear Mixed Model Selection via Streamlined Variational Bayes
Sparse Linear Mixed Model Selection via Streamlined Variational Bayes
Emanuele Degani
Luca Maestrini
Dorota Toczydlowska
M. Wand
14
1
0
13 Oct 2021
A Variational Inference Framework for Inverse Problems
A Variational Inference Framework for Inverse Problems
Luca Maestrini
R. Aykroyd
M. Wand
13
6
0
10 Mar 2021
Fast Markov chain Monte Carlo for high dimensional Bayesian regression
  models with shrinkage priors
Fast Markov chain Monte Carlo for high dimensional Bayesian regression models with shrinkage priors
Rui Jin
Aixin Tan
27
8
0
16 Mar 2019
Efficient sampling for Gaussian linear regression with arbitrary priors
Efficient sampling for Gaussian linear regression with arbitrary priors
P. R. Hahn
Jingyu He
H. Lopes
6
32
0
14 Jun 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
Scalable Bayesian regression in high dimensions with multiple data
  sources
Scalable Bayesian regression in high dimensions with multiple data sources
K. Perrakis
S. Mukherjee
The Alzheimer's Disease Neuroimaging Initiative
21
4
0
02 Oct 2017
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
33
72
0
07 Jul 2016
Simple, Scalable and Accurate Posterior Interval Estimation
Simple, Scalable and Accurate Posterior Interval Estimation
Cheng Li
Sanvesh Srivastava
David B. Dunson
8
54
0
13 May 2016
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
27
176
0
15 Jun 2015
Scaling It Up: Stochastic Search Structure Learning in Graphical Models
Scaling It Up: Stochastic Search Structure Learning in Graphical Models
Hao Wang
29
114
0
07 May 2015
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
40
166
0
01 Apr 2014
Bayesian Conditional Density Filtering
Bayesian Conditional Density Filtering
S. Qamar
Rajarshi Guhaniyogi
David B. Dunson
45
11
0
15 Jan 2014
Compound Poisson Processes, Latent Shrinkage Priors and Bayesian
  Nonconvex Penalization
Compound Poisson Processes, Latent Shrinkage Priors and Bayesian Nonconvex Penalization
Zhi-Hao Zhang
Jin Li
48
2
0
28 Aug 2013
Power-Expected-Posterior Priors for Variable Selection in Gaussian
  Linear Models
Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models
D. Fouskakis
I. Ntzoufras
D. Draper
31
37
0
09 Jul 2013
Bayesian Compressed Regression
Bayesian Compressed Regression
Rajarshi Guhaniyogi
David B. Dunson
36
73
0
04 Mar 2013
EP-GIG Priors and Applications in Bayesian Sparse Learning
EP-GIG Priors and Applications in Bayesian Sparse Learning
Zhihua Zhang
Shusen Wang
Dehua Liu
Michael I. Jordan
36
56
0
19 Apr 2012
Cramer Rao-Type Bounds for Sparse Bayesian Learning
Cramer Rao-Type Bounds for Sparse Bayesian Learning
Ranjitha Prasad
C. Murthy
51
46
0
06 Feb 2012
Generalized Beta Mixtures of Gaussians
Generalized Beta Mixtures of Gaussians
Artin Armagan
David B. Dunson
M. Clyde
59
150
0
25 Jul 2011
Posterior consistency in linear models under shrinkage priors
Posterior consistency in linear models under shrinkage priors
Artin Armagan
David B. Dunson
Jaeyong Lee
W. Bajwa
Nate Strawn
36
32
0
20 Apr 2011
1