ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.1086
  4. Cited By
Two Proposals for Robust PCA using Semidefinite Programming

Two Proposals for Robust PCA using Semidefinite Programming

6 December 2010
Michael B. McCoy
J. Tropp
ArXivPDFHTML

Papers citing "Two Proposals for Robust PCA using Semidefinite Programming"

17 / 17 papers shown
Title
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
Daniel Cederberg
22
0
0
17 May 2025
Synthetic Principal Component Design: Fast Covariate Balancing with
  Synthetic Controls
Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls
Yiping Lu
Jiajin Li
Lexing Ying
Jose H. Blanchet
19
2
0
28 Nov 2022
Robust Singular Values based on L1-norm PCA
Robust Singular Values based on L1-norm PCA
D. Le
P. Markopoulos
21
0
0
21 Oct 2022
Adaptive and Robust Multi-Task Learning
Adaptive and Robust Multi-Task Learning
Yaqi Duan
Kaizheng Wang
83
23
0
10 Feb 2022
Closed-Form, Provable, and Robust PCA via Leverage Statistics and
  Innovation Search
Closed-Form, Provable, and Robust PCA via Leverage Statistics and Innovation Search
M. Rahmani
Ping Li
24
4
0
23 Jun 2021
Outlier Detection and Data Clustering via Innovation Search
Outlier Detection and Data Clustering via Innovation Search
M. Rahmani
P. Li
34
3
0
30 Dec 2019
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
Chong Peng
Chenglizhao Chen
Zhao Kang
Jianbo Li
Q. Cheng
42
25
0
16 Apr 2019
An Overview of Robust Subspace Recovery
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
28
130
0
02 Mar 2018
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
  Robust Subspace Recovery
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery
Namrata Vaswani
T. Bouwmans
S. Javed
Praneeth Narayanamurthy
OOD
35
273
0
26 Nov 2017
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
Tyler Maunu
Teng Zhang
Gilad Lerman
24
63
0
13 Jun 2017
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
M. Rahmani
George Atia
35
134
0
15 Sep 2016
Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal
  Component Analysis
Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal Component Analysis
Young Woong Park
Diego Klabjan
11
24
0
10 Sep 2016
Robust PCA via Nonconvex Rank Approximation
Robust PCA via Nonconvex Rank Approximation
Zhao Kang
Chong Peng
Q. Cheng
35
161
0
17 Nov 2015
A Riemannian low-rank method for optimization over semidefinite matrices
  with block-diagonal constraints
A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints
Nicolas Boumal
27
67
0
01 Jun 2015
Relations among Some Low Rank Subspace Recovery Models
Relations among Some Low Rank Subspace Recovery Models
Hongyang R. Zhang
Zhouchen Lin
Chao Zhang
Junbin Gao
38
29
0
06 Dec 2014
Fast, Robust and Non-convex Subspace Recovery
Fast, Robust and Non-convex Subspace Recovery
Gilad Lerman
Tyler Maunu
41
77
0
24 Jun 2014
Robust subspace recovery by Tyler's M-estimator
Robust subspace recovery by Tyler's M-estimator
Teng Zhang
62
28
0
07 Jun 2012
1