Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1011.0415
Cited By
Learning Networks of Stochastic Differential Equations
1 November 2010
José Bento
M. Ibrahimi
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Networks of Stochastic Differential Equations"
38 / 38 papers shown
Title
Ergodic Network Stochastic Differential Equations
F. Iafrate
S. Iacus
34
0
0
23 Dec 2024
Signed-Perturbed Sums Estimation of ARX Systems: Exact Coverage and Strong Consistency (Extended Version)
A. Carè
E. Weyer
Balázs Cs. Csáji
M. Campi
20
0
0
18 Feb 2024
Squared Wasserstein-2 Distance for Efficient Reconstruction of Stochastic Differential Equations
Mingtao Xia
Xiangting Li
Qijing Shen
Tom Chou
11
4
0
21 Jan 2024
Inferring the Graph of Networked Dynamical Systems under Partial Observability and Spatially Colored Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
18
1
0
18 Dec 2023
Learning the Causal Structure of Networked Dynamical Systems under Latent Nodes and Structured Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
19
4
0
10 Dec 2023
Learning linear dynamical systems under convex constraints
Hemant Tyagi
D. Efimov
13
1
0
27 Mar 2023
Learning Transition Operators From Sparse Space-Time Samples
C. Kümmerle
Mauro Maggioni
Sui Tang
26
1
0
01 Dec 2022
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
12
2
0
08 Aug 2022
Parabolic Relaxation for Quadratically-constrained Quadratic Programming -- Part II: Theoretical & Computational Results
Ramtin Madani
Mersedeh Ashraphijuo
Mohsen Kheirandishfard
Alper Atamtürk
11
3
0
07 Aug 2022
Efficient and passive learning of networked dynamical systems driven by non-white exogenous inputs
Harish Doddi
Deepjyoti Deka
Saurav Talukdar
M. Salapaka
34
6
0
02 Oct 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
24
43
0
06 May 2021
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation and Optimal Measurement Placement in Power Systems?
A. Afonin
Michael Chertkov
17
3
0
07 Apr 2021
Sticky PDMP samplers for sparse and local inference problems
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
11
15
0
15 Mar 2021
Online Stochastic Gradient Descent Learns Linear Dynamical Systems from A Single Trajectory
Navid Reyhanian
Jarvis Haupt
21
3
0
23 Feb 2021
High-Dimensional Dynamic Systems Identification with Additional Constraints
Junlin Li
19
0
0
20 Dec 2019
Efficient Learning of Distributed Linear-Quadratic Controllers
S. Fattahi
Nikolai Matni
Somayeh Sojoudi
11
9
0
21 Sep 2019
Robust Guarantees for Perception-Based Control
Sarah Dean
Nikolai Matni
Benjamin Recht
Vickie Ye
14
79
0
08 Jul 2019
Learning Sparse Dynamical Systems from a Single Sample Trajectory
S. Fattahi
Nikolai Matni
Somayeh Sojoudi
18
40
0
20 Apr 2019
Physics Informed Topology Learning in Networks of Linear Dynamical Systems
Saurav Talukdar
Deepjyoti Deka
Harish Doddi
D. Materassi
Michael Chertkov
M. Salapaka
AI4CE
16
22
0
27 Sep 2018
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations
Samet Oymak
13
43
0
09 Sep 2018
Non-asymptotic Identification of LTI Systems from a Single Trajectory
Samet Oymak
N. Ozay
16
221
0
14 Jun 2018
Sample Complexity of Sparse System Identification Problem
S. Fattahi
Somayeh Sojoudi
16
12
0
21 Mar 2018
Online Learning of Power Transmission Dynamics
A. Lokhov
Marc Vuffray
Dmitry Shemetov
Deepjyoti Deka
Michael Chertkov
25
24
0
27 Oct 2017
On the Sample Complexity of the Linear Quadratic Regulator
Sarah Dean
Horia Mania
Nikolai Matni
Benjamin Recht
Stephen Tu
40
569
0
04 Oct 2017
On the Sample Complexity of Graphical Model Selection for Non-Stationary Processes
Nguyen Tran Quang
Oleksii Abramenko
A. Jung
19
4
0
17 Jan 2017
Mixing Times and Structural Inference for Bernoulli Autoregressive Processes
Dimitrios Katselis
Carolyn L. Beck
R. Srikant
24
14
0
19 Dec 2016
Learning conditional independence structure for high-dimensional uncorrelated vector processes
Nguyen Tran Quang
A. Jung
15
7
0
13 Sep 2016
Reconstructing undirected graphs from eigenspaces
Yohann De Castro
T. Espinasse
Paul Rochet
18
8
0
26 Mar 2016
Graphical LASSO Based Model Selection for Time Series
A. Jung
Gabor Hannak
N. Goertz
26
64
0
05 Oct 2014
Learning the Conditional Independence Structure of Stationary Time Series: A Multitask Learning Approach
A. Jung
39
31
0
04 Apr 2014
On the Information-theoretic Limits of Graphical Model Selection for Gaussian Time Series
Gabor Hannak
A. Jung
N. Goertz
31
6
0
04 Mar 2014
Compressive Nonparametric Graphical Model Selection For Time Series
A. Jung
Reinhard Heckel
Helmut Bölcskei
F. Hlawatsch
CML
51
18
0
13 Nov 2013
Support Recovery for the Drift Coefficient of High-Dimensional Diffusions
José Bento
M. Ibrahimi
32
6
0
19 Aug 2013
A Direct Estimation of High Dimensional Stationary Vector Autoregressions
Fang Han
Huanran Lu
Han Liu
66
120
0
01 Jul 2013
Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems
M. Ibrahimi
Adel Javanmard
Benjamin Van Roy
36
91
0
24 Mar 2013
Learning the Dependence Graph of Time Series with Latent Factors
A. Jalali
Sujay Sanghavi
CML
57
44
0
09 Jun 2011
Causal Network Inference via Group Sparse Regularization
Andrew K. Bolstad
B. V. Veen
Robert D. Nowak
CML
51
142
0
03 Jun 2011
Information Theoretic Limits on Learning Stochastic Differential Equations
José Bento
M. Ibrahimi
Andrea Montanari
61
8
0
09 Mar 2011
1