Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1009.3896
Cited By
Optimistic Rates for Learning with a Smooth Loss
20 September 2010
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimistic Rates for Learning with a Smooth Loss"
50 / 173 papers shown
Title
Establishing Linear Surrogate Regret Bounds for Convex Smooth Losses via Convolutional Fenchel-Young Losses
Yuzhou Cao
Han Bao
Lei Feng
Bo An
16
0
0
14 May 2025
Better Rates for Random Task Orderings in Continual Linear Models
Itay Evron
Ran Levinstein
Matan Schliserman
Uri Sherman
Tomer Koren
Daniel Soudry
Nathan Srebro
CLL
30
0
0
06 Apr 2025
Stability-based Generalization Analysis of Randomized Coordinate Descent for Pairwise Learning
Liang Wu
Ruixi Hu
Yunwen Lei
45
0
0
03 Mar 2025
Do we really have to filter out random noise in pre-training data for language models?
Jinghan Ru
Yuxin Xie
Xianwei Zhuang
Yuguo Yin
Yuexian Zou
83
2
0
10 Feb 2025
Shallow diffusion networks provably learn hidden low-dimensional structure
Nicholas M. Boffi
Arthur Jacot
Stephen Tu
Ingvar M. Ziemann
DiffM
34
1
0
15 Oct 2024
Federated Online Prediction from Experts with Differential Privacy: Separations and Regret Speed-ups
Fengyu Gao
Ruiquan Huang
Jing Yang
FedML
30
0
0
27 Sep 2024
Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition
Mohamad Amin Mohamadi
Zhiyuan Li
Lei Wu
Danica J. Sutherland
40
10
0
17 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
86
2
0
08 Jul 2024
Fully Unconstrained Online Learning
Ashok Cutkosky
Zakaria Mhammedi
CLL
27
1
0
30 May 2024
Universal Online Convex Optimization with
1
1
1
Projection per Round
Wenhao Yang
Yibo Wang
Peng Zhao
Lijun Zhang
32
2
0
30 May 2024
On the Rashomon ratio of infinite hypothesis sets
Evzenie Coupkova
Mireille Boutin
29
1
0
27 Apr 2024
On the Generalization Ability of Unsupervised Pretraining
Yuyang Deng
Junyuan Hong
Jiayu Zhou
M. Mahdavi
SSL
47
4
0
11 Mar 2024
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers
M. E. Ildiz
Yixiao Huang
Yingcong Li
A. S. Rawat
Samet Oymak
25
17
0
21 Feb 2024
Oracle-Efficient Differentially Private Learning with Public Data
Adam Block
Mark Bun
Rathin Desai
Abhishek Shetty
Steven Wu
FedML
16
2
0
13 Feb 2024
Tensor Completion via Integer Optimization
Xin Chen
S. Kudva
Yongzheng Dai
Anil Aswani
Chen Chen
13
0
0
06 Feb 2024
Fast Minimization of Expected Logarithmic Loss via Stochastic Dual Averaging
C. Tsai
Hao-Chung Cheng
Yen-Huan Li
25
0
0
05 Nov 2023
Online Convex Optimization with Switching Cost and Delayed Gradients
Spandan Senapati
Rahul Vaze
79
2
0
18 Oct 2023
Stability and Generalization for Minibatch SGD and Local SGD
Yunwen Lei
Tao Sun
Mingrui Liu
22
3
0
02 Oct 2023
Mixture Weight Estimation and Model Prediction in Multi-source Multi-target Domain Adaptation
Yuyang Deng
Ilja Kuzborskij
M. Mahdavi
OOD
16
2
0
19 Sep 2023
Efficient Methods for Non-stationary Online Learning
Peng Zhao
Yan-Feng Xie
Lijun Zhang
Zhi-Hua Zhou
36
19
0
16 Sep 2023
Sharpness Minimization Algorithms Do Not Only Minimize Sharpness To Achieve Better Generalization
Kaiyue Wen
Zhiyuan Li
Tengyu Ma
FAtt
22
26
0
20 Jul 2023
Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach
Yu-Hu Yan
Peng Zhao
Zhiguang Zhou
16
8
0
17 Jul 2023
On the sample complexity of parameter estimation in logistic regression with normal design
Daniel J. Hsu
A. Mazumdar
11
5
0
09 Jul 2023
Accelerated stochastic approximation with state-dependent noise
Sasila Ilandarideva
A. Juditsky
Guanghui Lan
Tianjiao Li
30
8
0
04 Jul 2023
The Inductive Bias of Flatness Regularization for Deep Matrix Factorization
Khashayar Gatmiry
Zhiyuan Li
Ching-Yao Chuang
Sashank J. Reddi
Tengyu Ma
Stefanie Jegelka
ODL
17
11
0
22 Jun 2023
Nonparametric regression using over-parameterized shallow ReLU neural networks
Yunfei Yang
Ding-Xuan Zhou
24
6
0
14 Jun 2023
Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression
Junfan Li
Shizhong Liao
17
0
0
14 Jun 2023
Unconstrained Online Learning with Unbounded Losses
Andrew Jacobsen
Ashok Cutkosky
18
16
0
08 Jun 2023
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
Lei Wu
Weijie J. Su
MLT
22
20
0
27 May 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
22
3
0
26 May 2023
Data-Dependent Bounds for Online Portfolio Selection Without Lipschitzness and Smoothness
C. Tsai
Ying-Ting Lin
Yen-Huan Li
26
4
0
23 May 2023
Margin theory for the scenario-based approach to robust optimization in high dimension
Fabien Lauer
16
1
0
07 Mar 2023
Tight Risk Bounds for Gradient Descent on Separable Data
Matan Schliserman
Tomer Koren
10
4
0
02 Mar 2023
Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
21
9
0
27 Feb 2023
Generalization Analysis for Contrastive Representation Learning
Yunwen Lei
Tianbao Yang
Yiming Ying
Ding-Xuan Zhou
23
8
0
24 Feb 2023
Stability-based Generalization Analysis for Mixtures of Pointwise and Pairwise Learning
Jiahuan Wang
Jun Chen
H. Chen
Bin Gu
Weifu Li
Xinwei Tang
MLT
11
2
0
20 Feb 2023
On the Stability and Generalization of Triplet Learning
Jun Chen
H. Chen
Xue Jiang
Bin Gu
Weifu Li
Tieliang Gong
Feng Zheng
24
4
0
20 Feb 2023
Minimizing Dynamic Regret on Geodesic Metric Spaces
Zihao Hu
Guanghui Wang
Jacob D. Abernethy
12
6
0
17 Feb 2023
Online Learning Guided Curvature Approximation: A Quasi-Newton Method with Global Non-Asymptotic Superlinear Convergence
Ruichen Jiang
Qiujiang Jin
Aryan Mokhtari
11
16
0
16 Feb 2023
Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization
Sijia Chen
Yu-Jie Zhang
Wei-Wei Tu
Peng Zhao
Lijun Zhang
8
16
0
09 Feb 2023
On Dynamic Regret and Constraint Violations in Constrained Online Convex Optimization
R. Vaze
6
4
0
24 Jan 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
21
13
0
23 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
32
2
0
09 Jan 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Improved Kernel Alignment Regret Bound for Online Kernel Learning
Junfan Li
Shizhong Liao
13
2
0
26 Dec 2022
Private optimization in the interpolation regime: faster rates and hardness results
Hilal Asi
Karan N. Chadha
Gary Cheng
John C. Duchi
32
5
0
31 Oct 2022
Stochastic Mirror Descent for Large-Scale Sparse Recovery
Sasila Ilandarideva
Yannis Bekri
A. Juditsky
Vianney Perchet
17
1
0
23 Oct 2022
Transfer learning with affine model transformation
Shunya Minami
Kenji Fukumizu
Yoshihiro Hayashi
Ryo Yoshida
11
1
0
18 Oct 2022
Adaptive Oracle-Efficient Online Learning
Guanghui Wang
Zihao Hu
Vidya Muthukumar
Jacob D. Abernethy
25
4
0
17 Oct 2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
19
4
0
13 Oct 2022
1
2
3
4
Next