Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1008.1290
Cited By
Latent variable graphical model selection via convex optimization
6 August 2010
V. Chandrasekaran
P. Parrilo
A. Willsky
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Latent variable graphical model selection via convex optimization"
50 / 57 papers shown
Title
Extremal graphical modeling with latent variables via convex optimization
Sebastian Engelke
Armeen Taeb
31
2
0
14 Mar 2024
Optimal vintage factor analysis with deflation varimax
Xin Bing
Dian Jin
Yuqian Zhang
Yuqian Zhang
27
1
0
16 Oct 2023
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
67
8
0
18 Jul 2023
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
32
7
0
06 Jul 2023
SKI to go Faster: Accelerating Toeplitz Neural Networks via Asymmetric Kernels
Alexander Moreno
Jonathan Mei
Luke Walters
23
0
0
15 May 2023
Bayesian Causal Inference in Doubly Gaussian DAG-probit Models
R. Tahmasbi
Keyvan Tahmasbi
19
0
0
12 Apr 2023
Hidden Factor estimation in Dynamic Generalized Factor Analysis Models
G. Picci
Lucia Falconi
A. Ferrante
Mattia Zorzi
13
3
0
23 Nov 2022
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
15
2
0
08 Aug 2022
Structure Learning in Graphical Models from Indirect Observations
Hang Zhang
Afshin Abdi
Faramarz Fekri
CML
26
0
0
06 May 2022
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
28
10
0
28 Oct 2021
Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles
Tianyi Yao
Minjie Wang
Genevera I. Allen
16
1
0
22 Oct 2021
Joint Gaussian Graphical Model Estimation: A Survey
Katherine Tsai
Oluwasanmi Koyejo
Mladen Kolar
CML
41
20
0
19 Oct 2021
Joint inference of multiple graphs with hidden variables from stationary graph signals
Samuel Rey
Andrei Buciulea
Madeline Navarro
Santiago Segarra
A. Marques
30
8
0
05 Oct 2021
Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition
Hongyuan Zhan
Kamesh Madduri
V. Shankar
10
0
0
22 Aug 2021
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
27
47
0
29 Jun 2021
Learning Gaussian Graphical Models with Latent Confounders
Ke Wang
Alexander M. Franks
Sang-Yun Oh
CML
32
2
0
14 May 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
44
165
0
15 Dec 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
21
5
0
25 Jul 2020
Learning Restricted Boltzmann Machines with Sparse Latent Variables
Guy Bresler
Rares-Darius Buhai
18
2
0
07 Jun 2020
Ivy: Instrumental Variable Synthesis for Causal Inference
Zhaobin Kuang
Frederic Sala
N. Sohoni
Sen Wu
A. Córdova-Palomera
Jared A. Dunnmon
J. Priest
Christopher Ré
CML
19
26
0
11 Apr 2020
Universality in Learning from Linear Measurements
Ehsan Abbasi
Fariborz Salehi
B. Hassibi
22
22
0
20 Jun 2019
Learning Dependency Structures for Weak Supervision Models
P. Varma
Frederic Sala
A. He
Alexander Ratner
Christopher Ré
NoLa
19
67
0
14 Mar 2019
Ising Models with Latent Conditional Gaussian Variables
Frank Nussbaum
Joachim Giesen
CML
17
6
0
28 Jan 2019
Predictive Learning on Hidden Tree-Structured Ising Models
Konstantinos E. Nikolakakis
Dionysios S. Kalogerias
Anand D. Sarwate
23
12
0
11 Dec 2018
Group induced graphical lasso allows for discovery of molecular pathways-pathways interactions
Veronica Tozzo
Federico Tomasi
M. Squillario
A. Barla
24
1
0
21 Nov 2018
Learning Latent Fractional dynamics with Unknown Unknowns
Gaurav Gupta
S. Pequito
P. Bogdan
23
32
0
02 Nov 2018
Robust Sparse Reduced Rank Regression in High Dimensions
Kean Ming Tan
Qiang Sun
Daniela Witten
27
3
0
18 Oct 2018
Learning Restricted Boltzmann Machines via Influence Maximization
Guy Bresler
Frederic Koehler
Ankur Moitra
Elchanan Mossel
AI4CE
28
29
0
25 May 2018
Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks
Alex E. White
Matthieu Vignes
CML
15
5
0
04 May 2018
Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport
Filip Elvander
A. Jakobsson
Johan Karlsson
24
22
0
10 Nov 2017
Robust Cost-Sensitive Learning for Recommendation with Implicit Feedback
Peng Yang
P. Zhao
Xin Gao
Yong Liu
29
20
0
03 Jul 2017
SILVar: Single Index Latent Variable Models
Jonathan Mei
José M. F. Moura
15
24
0
09 May 2017
Learning Semidefinite Regularizers
Yong Sheng Soh
V. Chandrasekaran
34
6
0
05 Jan 2017
Fast Algorithms for Demixing Sparse Signals from Nonlinear Observations
Mohammadreza Soltani
C. Hegde
27
29
0
03 Aug 2016
Graph-Guided Banding of the Covariance Matrix
Jacob Bien
19
6
0
01 Jun 2016
Generalized Network Psychometrics: Combining Network and Latent Variable Models
S. Epskamp
M. Rhemtulla
D. Borsboom
20
424
0
30 May 2016
Interpreting Latent Variables in Factor Models via Convex Optimization
Armeen Taeb
V. Chandrasekaran
16
9
0
04 Jan 2016
Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset
T. Bouwmans
A. Sobral
S. Javed
Soon Ki Jung
E. Zahzah
39
330
0
04 Nov 2015
Sparse plus low-rank autoregressive identification in neuroimaging time series
Raphaël Liégeois
Bamdev Mishra
Mattia Zorzi
R. Sepulchre
26
26
0
30 Mar 2015
Signal Processing on Graphs: Causal Modeling of Unstructured Data
Jonathan Mei
José M. F. Moura
CML
AI4TS
25
191
0
28 Feb 2015
A Primal-Dual Algorithmic Framework for Constrained Convex Minimization
Quoc Tran-Dinh
V. Cevher
34
47
0
20 Jun 2014
Linear Estimating Equations for Exponential Families with Application to Gaussian Linear Concentration Models
Peter G. M. Forbes
Steffen Lauritzen
38
34
0
04 Nov 2013
Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex Programs in Machine Learning
Zhouchen Lin
Risheng Liu
Zhixun Su
24
193
0
18 Oct 2013
Partial Gaussian Graphical Model Estimation
Xiao-Tong Yuan
Tong Zhang
49
42
0
28 Sep 2012
On the Linear Convergence of the Alternating Direction Method of Multipliers
Mingyi Hong
Zhi-Quan Luo
43
720
0
20 Aug 2012
Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
Shiqian Ma
Lingzhou Xue
H. Zou
57
101
0
06 Jun 2012
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anima Anandkumar
R. Valluvan
52
50
0
17 Mar 2012
Learning a Common Substructure of Multiple Graphical Gaussian Models
Satoshi Hara
Takashi Washio
CML
59
32
0
01 Mar 2012
Clustering using Max-norm Constrained Optimization
A. Jalali
Nathan Srebro
39
32
0
25 Feb 2012
Sparse Nonparametric Graphical Models
John D. Lafferty
Han Liu
Larry A. Wasserman
51
64
0
04 Jan 2012
1
2
Next