ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1007.4148
  4. Cited By
Reconstruction of a Low-rank Matrix in the Presence of Gaussian Noise

Reconstruction of a Low-rank Matrix in the Presence of Gaussian Noise

23 July 2010
A. Shabalin
A. Nobel
ArXivPDFHTML

Papers citing "Reconstruction of a Low-rank Matrix in the Presence of Gaussian Noise"

12 / 12 papers shown
Title
Empirical Bayes PCA in high dimensions
Empirical Bayes PCA in high dimensions
Xinyi Zhong
Chang Su
Z. Fan
26
19
0
21 Dec 2020
ScreeNOT: Exact MSE-Optimal Singular Value Thresholding in Correlated
  Noise
ScreeNOT: Exact MSE-Optimal Singular Value Thresholding in Correlated Noise
D. Donoho
M. Gavish
Elad Romanov
29
28
0
25 Sep 2020
Perturbation expansions and error bounds for the truncated singular
  value decomposition
Perturbation expansions and error bounds for the truncated singular value decomposition
Trung Vu
Evgenia Chunikhina
Raviv Raich
15
24
0
16 Sep 2020
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type
  Matrix
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type Matrix
T. Tony Cai
Rungang Han
Anru R. Zhang
52
15
0
28 Aug 2020
Bidimensional linked matrix factorization for pan-omics pan-cancer
  analysis
Bidimensional linked matrix factorization for pan-omics pan-cancer analysis
E. Lock
Jun Young Park
K. Hoadley
16
20
0
07 Feb 2020
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
37
7
0
26 Apr 2019
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
32
25
0
06 Nov 2018
Adapting to Unknown Noise Distribution in Matrix Denoising
Adapting to Unknown Noise Distribution in Matrix Denoising
Andrea Montanari
Feng Ruan
Jun Yan
36
13
0
06 Oct 2018
Tensor SVD: Statistical and Computational Limits
Tensor SVD: Statistical and Computational Limits
Anru R. Zhang
Dong Xia
28
166
0
08 Mar 2017
Testing in high-dimensional spiked models
Testing in high-dimensional spiked models
Iain M. Johnstone
A. Onatski
46
53
0
24 Sep 2015
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
D. Donoho
M. Gavish
Iain M. Johnstone
56
203
0
04 Nov 2013
OptShrink: An algorithm for improved low-rank signal matrix denoising by
  optimal, data-driven singular value shrinkage
OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage
R. Nadakuditi
51
162
0
25 Jun 2013
1