ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0909.1884
  4. Cited By
Data-driven calibration of linear estimators with minimal penalties

Data-driven calibration of linear estimators with minimal penalties

10 September 2009
Sylvain Arlot
Francis R. Bach
ArXivPDFHTML

Papers citing "Data-driven calibration of linear estimators with minimal penalties"

11 / 11 papers shown
Title
Minimum discrepancy principle strategy for choosing $k$ in $k$-NN
  regression
Minimum discrepancy principle strategy for choosing kkk in kkk-NN regression
Yaroslav Averyanov
Alain Celisse
18
0
0
20 Aug 2020
Rejoinder on: Minimal penalties and the slope heuristics: a survey
Rejoinder on: Minimal penalties and the slope heuristics: a survey
Sylvain Arlot
15
45
0
30 Sep 2019
The cost-free nature of optimally tuning Tikhonov regularizers and other
  ordered smoothers
The cost-free nature of optimally tuning Tikhonov regularizers and other ordered smoothers
Pierre C. Bellec
Dana Yang
18
8
0
29 May 2019
Optimal kernel selection for density estimation
Optimal kernel selection for density estimation
M. Lerasle
Nelo Molter Magalhães
Patricia Reynaud-Bouret
23
18
0
06 Nov 2015
Slope heuristics and V-Fold model selection in heteroscedastic
  regression using strongly localized bases
Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases
F. Navarro
Adrien Saumard
24
16
0
21 May 2015
Optimal bounds for aggregation of affine estimators
Optimal bounds for aggregation of affine estimators
Pierre C. Bellec
28
25
0
01 Oct 2014
Multi-task Regression using Minimal Penalties
Multi-task Regression using Minimal Penalties
Matthieu Solnon
Sylvain Arlot
Francis R. Bach
36
58
0
22 Jul 2011
Sharp Oracle Inequalities for Aggregation of Affine Estimators
Sharp Oracle Inequalities for Aggregation of Affine Estimators
A. Dalalyan
Joseph Salmon
56
85
0
20 Apr 2011
Union Support Recovery in Multi-task Learning
Union Support Recovery in Multi-task Learning
Mladen Kolar
John D. Lafferty
Larry A. Wasserman
88
60
0
31 Aug 2010
Estimator selection in the Gaussian setting
Estimator selection in the Gaussian setting
Y. Baraud
Christophe Giraud
S. Huet
69
32
0
13 Jul 2010
Data-driven calibration of penalties for least-squares regression
Data-driven calibration of penalties for least-squares regression
Sylvain Arlot
P. Massart
152
159
0
06 Feb 2008
1