ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0904.3132
  4. Cited By
Posterior Inference in Curved Exponential Families under Increasing
  Dimensions

Posterior Inference in Curved Exponential Families under Increasing Dimensions

20 April 2009
A. Belloni
Victor Chernozhukov
ArXivPDFHTML

Papers citing "Posterior Inference in Curved Exponential Families under Increasing Dimensions"

2 / 2 papers shown
Title
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear
  Bayesian Inverse Problems
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear Bayesian Inverse Problems
Yulong Lu
21
16
0
01 Jun 2017
A Bernstein-Von Mises Theorem for discrete probability distributions
A Bernstein-Von Mises Theorem for discrete probability distributions
S. Boucheron
Elisabeth Gassiat
113
49
0
14 Jul 2008
1