ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.1938
  4. Cited By
Trek separation for Gaussian graphical models

Trek separation for Gaussian graphical models

10 December 2008
S. Sullivant
Kelli Talaska
J. Draisma
ArXivPDFHTML

Papers citing "Trek separation for Gaussian graphical models"

24 / 24 papers shown
Title
Using Time Structure to Estimate Causal Effects
Using Time Structure to Estimate Causal Effects
Tom Hochsprung
Jakob Runge
Andreas Gerhardus
CML
29
0
0
15 Apr 2025
A matrix algebra for graphical statistical models
A matrix algebra for graphical statistical models
Qingyuan Zhao
34
1
0
22 Jul 2024
Learning Discrete Concepts in Latent Hierarchical Models
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Biwei Huang
Eric P. Xing
Yuejie Chi
Kun Zhang
46
4
0
01 Jun 2024
Faithlessness in Gaussian graphical models
Faithlessness in Gaussian graphical models
Mathias Drton
Leonard Henckel
Benjamin Hollering
Pratik Misra
35
1
0
08 Apr 2024
On the Three Demons in Causality in Finance: Time Resolution,
  Nonstationarity, and Latent Factors
On the Three Demons in Causality in Finance: Time Resolution, Nonstationarity, and Latent Factors
Xinshuai Dong
Haoyue Dai
Yewen Fan
Songyao Jin
Sathyamoorthy Rajendran
Kun Zhang
CML
21
1
0
28 Dec 2023
Learning Linear Gaussian Polytree Models with Interventions
Learning Linear Gaussian Polytree Models with Interventions
D. Tramontano
L. Waldmann
Mathias Drton
Eliana Duarte
31
0
0
08 Nov 2023
Entropic covariance models
Entropic covariance models
Piotr Zwiernik
22
2
0
06 Jun 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
17
24
0
27 Mar 2023
Testing Many Constraints in Possibly Irregular Models Using Incomplete
  U-Statistics
Testing Many Constraints in Possibly Irregular Models Using Incomplete U-Statistics
Nils Sturma
Mathias Drton
Dennis Leung
28
3
0
24 Aug 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
16
3
0
30 May 2022
Order-based Structure Learning without Score Equivalence
Order-based Structure Learning without Score Equivalence
Hyunwoong Chang
James Cai
Quan Zhou
CML
OffRL
11
3
0
10 Feb 2022
Half-Trek Criterion for Identifiability of Latent Variable Models
Half-Trek Criterion for Identifiability of Latent Variable Models
Rina Foygel Barber
Mathias Drton
Nils Sturma
Luca Weihs
CML
28
10
0
12 Jan 2022
Computing Maximum Likelihood Estimates for Gaussian Graphical Models
  with Macaulay2
Computing Maximum Likelihood Estimates for Gaussian Graphical Models with Macaulay2
Carlos Améndola
Luis David García Puente
R. Homs
Olga Kuznetsova
Harshit J. Motwani
21
2
0
21 Dec 2020
Graphical continuous Lyapunov models
Graphical continuous Lyapunov models
Gherardo Varando
N. Hansen
21
17
0
21 May 2020
An Upper Bound for Random Measurement Error in Causal Discovery
An Upper Bound for Random Measurement Error in Causal Discovery
Tineke Blom
A. Klimovskaia
Sara Magliacane
Joris M. Mooij
24
10
0
18 Oct 2018
Algebraic Equivalence of Linear Structural Equation Models
Algebraic Equivalence of Linear Structural Equation Models
T. V. Ommen
Joris M. Mooij
24
5
0
10 Jul 2018
Computation of maximum likelihood estimates in cyclic structural
  equation models
Computation of maximum likelihood estimates in cyclic structural equation models
Mathias Drton
C. Fox
Y Samuel Wang
27
16
0
11 Oct 2016
Wald tests of singular hypotheses
Wald tests of singular hypotheses
Mathias Drton
Han Xiao
56
33
0
24 Apr 2013
Geometry of the faithfulness assumption in causal inference
Geometry of the faithfulness assumption in causal inference
Caroline Uhler
Garvesh Raskutti
Peter Buhlmann
B. Yu
52
217
0
02 Jul 2012
Geometry of maximum likelihood estimation in Gaussian graphical models
Geometry of maximum likelihood estimation in Gaussian graphical models
Caroline Uhler
87
84
0
13 Dec 2010
Identifying Causal Effects with Computer Algebra
Identifying Causal Effects with Computer Algebra
L. Garcia
Sarah Spielvogel
S. Sullivant
CML
82
38
0
22 Jul 2010
On a parametrization of positive semidefinite matrices with zeros
On a parametrization of positive semidefinite matrices with zeros
Mathias Drton
Josephine Yu
118
19
0
19 Jan 2010
Measuring Latent Causal Structure
Measuring Latent Causal Structure
Ricardo M. A. Silva
CML
83
0
0
07 Jan 2010
Algebraic geometry of Gaussian Bayesian networks
Algebraic geometry of Gaussian Bayesian networks
S. Sullivant
169
60
0
06 Apr 2007
1