ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0803.4026
  4. Cited By
High-dimensional analysis of semidefinite relaxations for sparse
  principal components

High-dimensional analysis of semidefinite relaxations for sparse principal components

27 March 2008
Arash A. Amini
Martin J. Wainwright
ArXivPDFHTML

Papers citing "High-dimensional analysis of semidefinite relaxations for sparse principal components"

3 / 3 papers shown
Title
Sparse PCA With Multiple Components
Sparse PCA With Multiple Components
Ryan Cory-Wright
J. Pauphilet
90
2
0
29 Sep 2022
Subexponential-Time Algorithms for Sparse PCA
Subexponential-Time Algorithms for Sparse PCA
Yunzi Ding
Dmitriy Kunisky
Alexander S. Wein
Afonso S. Bandeira
62
58
0
26 Jul 2019
Operator norm consistent estimation of large-dimensional sparse
  covariance matrices
Operator norm consistent estimation of large-dimensional sparse covariance matrices
N. Karoui
117
397
0
21 Jan 2009
1