Nix and Fix: Targeting 1000x Compression of 3D Gaussian Splatting with Diffusion Models
- 3DGS
3D Gaussian Splatting (3DGS) revolutionized novel view rendering. Instead of inferring from dense spatial points, as implicit representations do, 3DGS uses sparse Gaussians. This enables real-time performance but increases space requirements, hindering applications such as immersive communication. 3DGS compression emerged as a field aimed at alleviating this issue. While impressive progress has been made, at low rates, compression introduces artifacts that degrade visual quality significantly. We introduce NiFi, a method for extreme 3DGS compression through restoration via artifact-aware, diffusion-based one-step distillation. We show that our method achieves state-of-the-art perceptual quality at extremely low rates, down to 0.1 MB, and towards 1000x rate improvement over 3DGS at comparable perceptual performance. The code will be open-sourced upon acceptance.
View on arXiv