Automatic Constraint Policy Optimization based on Continuous Constraint Interpolation Framework for Offline Reinforcement Learning
- OffRL
Offline Reinforcement Learning (RL) relies on policy constraints to mitigate extrapolation error, where both the constraint form and constraint strength critically shape performance. However, most existing methods commit to a single constraint family: weighted behavior cloning, density regularization, or support constraints, without a unified principle that explains their connections or trade-offs. In this work, we propose Continuous Constraint Interpolation (CCI), a unified optimization framework in which these three constraint families arise as special cases along a common constraint spectrum. The CCI framework introduces a single interpolation parameter that enables smooth transitions and principled combinations across constraint types. Building on CCI, we develop Automatic Constraint Policy Optimization (ACPO), a practical primal--dual algorithm that adapts the interpolation parameter via a Lagrangian dual update. Moreover, we establish a maximum-entropy performance difference lemma and derive performance lower bounds for both the closed-form optimal policy and its parametric projection. Experiments on D4RL and NeoRL2 demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
View on arXiv