Conditional Performance Guarantee for Large Reasoning Models
- LRM
Large reasoning models have shown strong performance through extended chain-of-thought reasoning, yet their computational cost remains significant. Probably approximately correct (PAC) reasoning provides statistical guarantees for efficient reasoning by adaptively switching between thinking and non-thinking models, but the guarantee holds only in the marginal case and does not provide exact conditional coverage. We propose G-PAC reasoning, a practical framework that provides PAC-style guarantees at the group level by partitioning the input space. We develop two instantiations: Group PAC (G-PAC) reasoning for known group structures and Clustered PAC (C-PAC) reasoning for unknown groupings. We prove that both G-PAC and C-PAC achieve group-conditional risk control, and that grouping can strictly improve efficiency over marginal PAC reasoning in heterogeneous settings. Our experiments on diverse reasoning benchmarks demonstrate that G-PAC and C-PAC successfully achieve group-conditional risk control while maintaining substantial computational savings.
View on arXiv