1

ScribbleSense: Generative Scribble-Based Texture Editing with Intent Prediction

IEEE Transactions on Visualization and Computer Graphics (TVCG), 2025
Yudi Zhang
Yeming Geng
Lei Zhang
Main:6 Pages
16 Figures
Appendix:6 Pages
Abstract

Interactive 3D model texture editing presents enhanced opportunities for creating 3D assets, with freehand drawing style offering the most intuitive experience. However, existing methods primarily support sketch-based interactions for outlining, while the utilization of coarse-grained scribble-based interaction remains limited. Furthermore, current methodologies often encounter challenges due to the abstract nature of scribble instructions, which can result in ambiguous editing intentions and unclear target semantic locations. To address these issues, we propose ScribbleSense, an editing method that combines multimodal large language models (MLLMs) and image generation models to effectively resolve these challenges. We leverage the visual capabilities of MLLMs to predict the editing intent behind the scribbles. Once the semantic intent of the scribble is discerned, we employ globally generated images to extract local texture details, thereby anchoring local semantics and alleviating ambiguities concerning the target semantic locations. Experimental results indicate that our method effectively leverages the strengths of MLLMs, achieving state-of-the-art interactive editing performance for scribble-based texture editing.

View on arXiv
Comments on this paper