MIDI-LLaMA: An Instruction-Following Multimodal LLM for Symbolic Music Understanding
- MLLM
Recent advances in multimodal large language models (MLLM) for audio music have demonstrated strong capabilities in music understanding, yet symbolic music, a fundamental representation of musical structure, remains unexplored. In this work, we introduce MIDI-LLaMA, the first instruction-following MLLM for symbolic music understanding. Our approach aligns the MIDI encoder MusicBERT and Llama-3-8B via a two-stage pipeline comprising feature alignment and instruction tuning. To support training, we design a scalable annotation pipeline that annotates GiantMIDI-Piano with fine-grained metadata, resulting in a MIDI-text dataset. Compared with the baseline trained on converting MIDI into ABC notation under the same instruction-tuning procedure, MIDI-LLaMA substantially outperforms in captioning and semantic alignment in question answering. Human evaluation further confirms the advantages of MIDI-LLaMA in music understanding, emotion recognition, creativity, and overall preference. These findings demonstrate that incorporating symbolic music into large language models enhances their capacity for musical understanding.
View on arXiv