12

PTQ4ARVG: Post-Training Quantization for AutoRegressive Visual Generation Models

Xuewen Liu
Zhikai Li
Jing Zhang
Mengjuan Chen
Qingyi Gu
Main:9 Pages
17 Figures
Bibliography:3 Pages
14 Tables
Appendix:13 Pages
Abstract

AutoRegressive Visual Generation (ARVG) models retain an architecture compatible with language models, while achieving performance comparable to diffusion-based models. Quantization is commonly employed in neural networks to reduce model size and computational latency. However, applying quantization to ARVG remains largely underexplored, and existing quantization methods fail to generalize effectively to ARVG models. In this paper, we explore this issue and identify three key challenges: (1) severe outliers at channel-wise level, (2) highly dynamic activations at token-wise level, and (3) mismatched distribution information at sample-wise level. To these ends, we propose PTQ4ARVG, a training-free post-training quantization (PTQ) framework consisting of: (1) Gain-Projected Scaling (GPS) mitigates the channel-wise outliers, which expands the quantization loss via a Taylor series to quantify the gain of scaling for activation-weight quantization, and derives the optimal scaling factor through differentiation.(2) Static Token-Wise Quantization (STWQ) leverages the inherent properties of ARVG, fixed token length and position-invariant distribution across samples, to address token-wise variance without incurring dynamic calibration overhead.(3) Distribution-Guided Calibration (DGC) selects samples that contribute most to distributional entropy, eliminating the sample-wise distribution mismatch. Extensive experiments show that PTQ4ARVG can effectively quantize the ARVG family models to 8-bit and 6-bit while maintaining competitive performance. Code is available atthis http URL.

View on arXiv
Comments on this paper