10

FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory

Lei Wei
Xu Dong
Xiao Peng
Niantao Xie
Bin Wang
Main:4 Pages
2 Figures
Bibliography:1 Pages
3 Tables
Abstract

Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.

View on arXiv
Comments on this paper