ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2601.11660
13
0

Zeros can be Informative: Masked Binary U-Net for Image Segmentation on Tensor Cores

15 January 2026
Chunshu Wu
Ruibing Song
Sushant Kondguli
Tong Geng
Ang Li
    MQ
ArXiv (abs)PDFHTML
Main:8 Pages
19 Figures
Bibliography:4 Pages
8 Tables
Appendix:4 Pages
Abstract

Real-time image segmentation is a key enabler for AR/VR, robotics, drones, and autonomous systems, where tight accuracy, latency, and energy budgets must be met on resource-constrained edge devices. While U-Net offers a favorable balance of accuracy and efficiency compared to large transformer-based models, achieving real-time performance on high-resolution input remains challenging due to compute, memory, and power limits. Extreme quantization, particularly binary networks, is appealing for its hardware-friendly operations. However, two obstacles limit practicality: (1) severe accuracy degradation, and (2) a lack of end-to-end implementations that deliver efficiency on general-purpose GPUs.We make two empirical observations that guide our design. (1) An explicit zero state is essential: training with zero masking to binary U-Net weights yields noticeable sparsity. (2) Quantization sensitivity is uniform across layers. Motivated by these findings, we introduce Masked Binary U-Net (MBU-Net), obtained through a cost-aware masking strategy that prioritizes masking where it yields the highest accuracy-per-cost, reconciling accuracy with near-binary efficiency.To realize these gains in practice, we develop a GPU execution framework that maps MBU-Net to Tensor Cores via a subtractive bit-encoding scheme, efficiently implementing masked binary weights with binary activations. This design leverages native binary Tensor Core BMMA instructions, enabling high throughput and energy savings on widely available GPUs. Across 3 segmentation benchmarks, MBU-Net attains near full-precision accuracy (3% average drop) while delivering 2.04x speedup and 3.54x energy reductions over a 16-bit floating point U-Net.

View on arXiv
Comments on this paper