64

A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5

Xingjun Ma
Yixu Wang
Hengyuan Xu
Yutao Wu
Yifan Ding
Yunhan Zhao
Zilong Wang
Jiabin Hua
Ming Wen
Jianan Liu
Ranjie Duan
Yifeng Gao
Yingshui Tan
Yunhao Chen
Hui Xue
Xin Wang
Wei Cheng
Jingjing Chen
Zuxuan Wu
Bo Li
Yu-Gang Jiang
Main:33 Pages
28 Figures
Bibliography:3 Pages
14 Tables
Appendix:5 Pages
Abstract

The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has produced substantial gains in reasoning, perception, and generative capability across language and vision. However, whether these advances yield commensurate improvements in safety remains unclear, in part due to fragmented evaluation practices limited to single modalities or threat models. In this report, we present an integrated safety evaluation of 7 frontier models: GPT-5.2, Gemini 3 Pro, Qwen3-VL, Doubao 1.8, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5. We evaluate each model across language, vision-language, and image generation settings using a unified protocol that integrates benchmark evaluation, adversarial evaluation, multilingual evaluation, and compliance evaluation. Aggregating our evaluations into safety leaderboards and model safety profiles across multiple evaluation modes reveals a sharply heterogeneous safety landscape. While GPT-5.2 demonstrates consistently strong and balanced safety performance across evaluations, other models exhibit pronounced trade-offs among benchmark safety, adversarial alignment, multilingual generalization, and regulatory compliance. Both language and vision-language modalities show significant vulnerability under adversarial evaluation, with all models degrading substantially despite strong results on standard benchmarks. Text-to-image models achieve relatively stronger alignment in regulated visual risk categories, yet remain brittle under adversarial or semantically ambiguous prompts. Overall, these results show that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation scheme, underscoring the need for standardized safety evaluations to accurately assess real-world risk and guide responsible model development and deployment.

View on arXiv
Comments on this paper