ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2601.06424
49
0

Can a Unimodal Language Agent Provide Preferences to Tune a Multimodal Vision-Language Model?

10 January 2026
Sazia Tabasum Mim
Jack Morris
Manish Dhakal
Yanming Xiu
Maria Gorlatova
Yi Ding
    MLLM
ArXiv (abs)PDFHTML
Main:2 Pages
2 Figures
9 Tables
Appendix:14 Pages
Abstract

To explore a more scalable path for adding multimodal capabilities to existing LLMs, this paper addresses a fundamental question: Can a unimodal LLM, relying solely on text, reason about its own informational needs and provide effective feedback to optimize a multimodal model? To answer this, we propose a method that enables a language agent to give feedback to a vision-language model (VLM) to adapt text generation to the agent's preferences. Our results from different experiments affirm this hypothesis, showing that LLM preference feedback significantly enhances VLM descriptions. Using our proposed method, we find that the VLM can generate multimodal scene descriptions to help the LLM better understand multimodal context, leading to improvements of maximum 13% in absolute accuracy compared to the baseline multimodal approach. Furthermore, a human study validated our AI-driven feedback, showing a 64.6% preference alignment rate between the LLM's choices and human judgments. Extensive experiments provide insights on how and why the method works and its limitations.

View on arXiv
Comments on this paper